Câu hỏi:

15/05/2021 642

Cho hai số thực x, y thỏa mãn x2+y24x+6y+4+y2+6y+10=6+4xx2Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức T=x2+y2a. Có bao nhiêu giá trị nguyên thuộc đoạn 10;10 của tham số a để M2m ?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:x2+y24x+6y+4+y2+6y+10=6+4xx2

x2+y24x+6y+4+y2+6y+106+4xx2=0

x2+y24x+6y+4+y2+6y+106+4xx2y2+6y+10+6+4xx2y2+6y+10+6+4xx2=0

x2+y24x+6y+4+y2+6y+1064x+x2y2+6y+10+6+4xx2=0

x2+y24x+6y+4+x2+y24x+6y+4y2+6y+10+6+4xx2=0

x2+y24x+6y+4+1+1y2+6y+10+6+4xx2=0

x2+y24x+6y+4=0

 (vì 1+1y2+6y+10+6+4xx2>0)

x22+y+32=9

Phương trình x22+y+32=9 là phương trình đường tròn C tâm I2;3 và bán kính R = 3.

Gọi Nx;yC ta suy ra ON=x2+y2 suy ra  T=ONa

Gọi A, B là giao điểm của đường tròn C và đường thẳng OI.

Khi đó, OA=OIR=133 và OB=OI+R=13+3 

Suy ra  133x2+y213+3

TH1: nếu 133a13+3 thì  x2+y2a0minT=0M2ma1;2;3;4;5;6

TH2: Nếu a<133a<13 nên 13+3a>133a, do đó M=13+3a;m=133a

Vì M2m13+3a2133a

133a2213+62a2013+1a13+9a5;6;7;8;9;10

Vậy có 10 giá trị của a thỏa mãn đề bài.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=x33mx2+3m21x+2020. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số có giá trị nhỏ nhất trên khoảng  0;+

Xem đáp án » 17/05/2021 6,137

Câu 2:

Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y=xm22xm trên đoạn 0;4 bằng – 1.

Xem đáp án » 15/05/2021 2,415

Câu 3:

Cho fx=1x24x+5x24+x. Gọi M=maxx0;3fx;m=minx0;3fx. Khi đó Mm bằng:

Xem đáp án » 15/05/2021 1,202

Câu 4:

Cho hàm số y=x+1x1 có đồ thị là C. Gọi MxM;yM là một điểm bất kì trên (C). Khi tổng khoảng cách từ M đến hai trục tọa độ là nhỏ nhất, tính tổng  xM+yM

Xem đáp án » 17/05/2021 1,086

Câu 5:

Cho f (x) mà đồ thị hàm số y=f'(x) như hình vẽ bên

Bất phương trình fx>sinπx2+m nghiệm đúng với mọi x1;3 khi và chỉ khi:

Xem đáp án » 15/05/2021 730

Câu 6:

Cho các số thực x, y thay đổi thỏa mãn x2+2y2+2xy=1 và hàm số ft=t4t2+2. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của Q=fx+y+1x+2y2. Tính M + m?

Xem đáp án » 17/05/2021 519

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store