Câu hỏi:

04/06/2021 2,133

Có bao nhiêu số nguyên m để hàm số y=13x3mx2+x1 đồng biến trên ?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Xét hàm số y=13x3mx2+x1. Ta có tập xác định D=

Đạo hàm y'=x22mx+1

Để hàm số đồng biến trên  thì y'0, x và y'=0 tại hữu hạn điểm trên 

Điều này xảy ra khi và chỉ khi Δ'=m210 (do a=1>0)

m2101m1 . Vậy có 3 số nguyên thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số nguyên m để hàm số y=13x3mx2+4x1 đồng biến trên ?

Xem đáp án » 04/06/2021 76,572

Câu 2:

Cho hàm số y=fx có đồ thị như hình vẽ. Hàm số y=2019fx đồng biến trên khoảng nào dưới đây?

Xem đáp án » 04/06/2021 9,696

Câu 3:

Cho hàm bậc ba y=fx có đồ thị đạo hàm y=f'x như hình sau:

Hàm số đã cho nghịch biến trên khoảng

Xem đáp án » 04/06/2021 7,817

Câu 4:

Trong các hàm số sau, hàm số nào nghịch biến trên 1;+?

Xem đáp án » 04/06/2021 4,429

Câu 5:

Cho hàm số y=xcosx. Khẳng định nào sau đây đúng?

Xem đáp án » 04/06/2021 2,593

Câu 6:

Hàm số nào dưới đây đồng biến trên khoảng 0;+

Xem đáp án » 04/06/2021 2,339

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store