Câu hỏi:
12/07/2024 690
Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.

Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Quảng cáo
Trả lời:
Hướng dẫn giải
*) Hình a:
Xét ∆ABC và ∆DCB có:
AB = CD (giả thiết)
BC chung
\(\widehat {ABC} = \widehat {DCB}\) (giả thiết)
Do đó, ∆ABC = ∆DCB (c – g – c).
*) Hình b:
Xét ∆EFH và ∆EGH có:
EF = EG (giả thiết)
EH chung
\(\widehat {FEH} = \widehat {GEH}\) (giả thiết)
Do đó, ∆EFH = ∆EGH (c – g – c)
*) Hình c:
Xét ∆MON và ∆POQ có:
MO = PO (giả thiết)
NO = QO (giả thiết)
\(\widehat {MON} = \widehat {POQ}\) (hai góc đối đỉnh)
Do đó, ∆MON = ∆POQ (c – g – c).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Vì ∆AED = ∆BEC nên AE = BE; ED = EC.
Ta có: AC = AE + EC; BD = BE + ED.
Do đó, AC = BD.
Xét ∆ABD và ∆BAC ta có:
AC = BD (chứng minh trên)
AB chung
AD = CB (giả thiết)
Do đó, ∆ABD = ∆BAC (c – c – c)
Suy ra \(\widehat {ABD} = \widehat {BAC}\) (hai góc tương ứng)
Xét tam giác AEB có:
\(\widehat {ABE} + \widehat {BAE} + \widehat {AEB} = 180^\circ \)
Do đó, \(2\widehat {ABE} = 180^\circ - \widehat {AEB}\) (vì \(\widehat {ABE} = \widehat {BAE}\) do \(\widehat {ABD} = \widehat {BAC}\))
Suy ra \(\widehat {ABE} = \frac{{180^\circ - \widehat {AEB}}}{2}\) (4)
Xét ∆ACD và ∆BDC ta có:
AC = BD (chứng minh trên)
CD chung
AD = CB (giả thiết)
Do đó, ∆ACD = ∆BDC (c – c – c)
Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)
Xét tam giác DEC có:
\(\widehat {DCE} + \widehat {EDC} + \widehat {DEC} = 180^\circ \)
Do đó, \(2\widehat {EDC} = 180^\circ - \widehat {DEC}\) (vì \(\widehat {EDC} = \widehat {DCE}\) do \(\widehat {ACD} = \widehat {BDC}\))
Suy ra \(\widehat {EDC} = \frac{{180^\circ - \widehat {DEC}}}{2}\) (5)
Lại có, \(\widehat {AEB},\,\,\widehat {DEC}\) là hai góc đối đỉnh nên \(\widehat {AEB} = \widehat {DEC}\) (6)
Từ (4); (5); (6) suy ra \(\widehat {ABE}\) = \(\widehat {EDC}\) hay \(\widehat {ABD} = \widehat {BDC}\).
Mà hai góc này lại ở vị trí so le trong nên AB // CD.
Lời giải
Hướng dẫn giải
Vì M là trung điểm của BC nên BM = MC = \(\frac{{BC}}{2}\)
Vì N là trung điểm của EF nên EN = NF = \(\frac{{EF}}{2}\)
Mà BC = EF (giả thiết) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
AB = DE (giả thiết)
BM = EN (chứng minh trên)
AM = DN (giả thiết)
Do đó, ∆ABM = ∆DEN (c – c – c).
Suy ra, \(\widehat {ABM} = \widehat {DEN}\)(hai góc tương ứng) hay \(\widehat {ABC} = \widehat {DEF}\).
Xét ∆ABC và ∆DEF ta có:
AB = DE (giả thiết)
BC = EF (giả thiết)
\(\widehat {ABC} = \widehat {DEF}\) (chứng minh trên)
Do đó, ∆ABC = ∆DEF (c – g – c).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.