Câu hỏi:
12/07/2024 489Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
*) Hình a:
Xét ∆ABC và ∆DCB có:
AB = CD (giả thiết)
BC chung
\(\widehat {ABC} = \widehat {DCB}\) (giả thiết)
Do đó, ∆ABC = ∆DCB (c – g – c).
*) Hình b:
Xét ∆EFH và ∆EGH có:
EF = EG (giả thiết)
EH chung
\(\widehat {FEH} = \widehat {GEH}\) (giả thiết)
Do đó, ∆EFH = ∆EGH (c – g – c)
*) Hình c:
Xét ∆MON và ∆POQ có:
MO = PO (giả thiết)
NO = QO (giả thiết)
\(\widehat {MON} = \widehat {POQ}\) (hai góc đối đỉnh)
Do đó, ∆MON = ∆POQ (c – g – c).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
AB song song với DC.
Câu 2:
Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).
Chứng minh rằng ∆ABC = ∆ABD.
Câu 3:
Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.
Câu 4:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
∆AED = ∆BEC.
Câu 5:
Câu 6:
Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Câu 7:
Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).
Chứng minh rằng AD = BC.
về câu hỏi!