Câu hỏi:
13/07/2024 717Cho tam giác ABC bằng tam giác DEF (H.4.28).
Trên hai cạnh AC và DF lấy hai điểm P và Q sao cho BP, EQ lần lượt là phân giác của các góc \(\widehat {ABC}\) và \[\widehat {DEF}\]. Chứng minh rằng: BP = EQ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì BP là tia phân giác của góc \(\widehat {ABP}\) nên \(\widehat {ABP} = \widehat {PBC} = \frac{{\widehat {ABC}}}{2}\)
Vì EQ là tia phân giác của góc\(\widehat {DEF}\) nên \(\widehat {DEQ} = \widehat {QEF} = \frac{{\widehat {DEF}}}{2}\)
Mà \(\widehat {ABC}\) = \(\widehat {DEF}\) nên \(\widehat {PBC}\) = \(\widehat {QEF}\).
Xét ∆PBC và ∆QEF ta có:
BC = EF (chứng minh trên)
\(\widehat {PBC}\) = \(\widehat {QEF}\) (chứng minh trên)
\(\widehat {PCB} = \widehat {QFE}\) (do \(\widehat {ACB} = \widehat {DFE}\)chứng minh trên)
Do đó, ∆PBC = ∆QEF (g – c – g)
Suy ra, BP = EQ (hai cạnh tương ứng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
AB song song với DC.
Câu 2:
Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).
Chứng minh rằng ∆ABC = ∆ABD.
Câu 3:
Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.
Câu 4:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
∆AED = ∆BEC.
Câu 5:
Câu 6:
Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Câu 7:
Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).
Chứng minh rằng AD = BC.
về câu hỏi!