Câu hỏi:
12/07/2024 614
Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?

Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?
Quảng cáo
Trả lời:
Hướng dẫn giải
+ Tam giác ABC có AB = AC (kí hiệu bằng nhau trên hình)
Do đó, tam giác ABC cân tại đỉnh A.
+ Áp dụng định lí tổng 3 góc trong tam giác DEF, ta có:
\(\widehat D + \widehat E + \widehat F = 180^\circ \)
Suy ra \(\widehat F = 180^\circ - \left( {\widehat D + \widehat E} \right) = 180^\circ - \left( {70^\circ + 50^\circ } \right) = 60^\circ \).
Do đó ta có, \(\widehat D \ne \widehat E \ne \widehat F\). Vậy tam giác DEF không phải tam giác cân.
+ Tam giác MNP có \(\widehat N = \widehat P\,\,\,\left( { = 50^\circ } \right)\).
Do đó, tam giác MNP cân tại đỉnh M.
+ Áp dụng định lí tổng 3 góc trong tam giác KGH, ta có:
\(\widehat K + \widehat G + \widehat H = 180^\circ \)
Suy ra \(\widehat H = 180^\circ - \left( {\widehat K + \widehat G} \right) = 180^\circ - \left( {40^\circ + 70^\circ } \right) = 70^\circ \).
Do đó tam giác KGH có \(\widehat G = \widehat H\, = 70^\circ \).
Vậy tam giác KGH cân tại đỉnh K.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Tam giác ABE vuông tại E, do đó: \(\widehat A + \widehat {ABE} = 90^\circ \Rightarrow \widehat {ABE} = 90^\circ - \widehat A\).
Tam giác ACF vuông tại F, do đó: \(\widehat A + \widehat {ACF} = 90^\circ \Rightarrow \widehat {ACF} = 90^\circ - \widehat A\).
Từ đó, suy ra \(\widehat {ABE} = \widehat {ACF}\).
Xét tam giác vuông AEB và tam giác vuông AFC có:
BE = CF (theo giả thiết)
\(\widehat {ABE} = \widehat {ACF}\) (cmt)
Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).
Suy ra AB = AC (hai cạnh tương ứng).
Vậy tam giác ABC cân tại đỉnh A.
Lời giải
Hướng dẫn giải
Xét tam giác vuông ABH và tam giác vuông ACH có:
AB = AC (∆ABC cân tại đỉnh A)
AH: cạnh chung
Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra \(\widehat {BAH} = \widehat {CAH}\), hay \(\widehat {BAM} = \widehat {CAM}\).
Xét tam giác ABM và ACM có:
AB = AC (∆ABC cân tại đỉnh A)
\(\widehat {BAM} = \widehat {CAM}\)
AM: cạnh chung
Do đó, ∆ABM = ∆ACM (c – g – c).
Suy ra \(\widehat {MBA} = \widehat {MCA}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.