Câu hỏi:

12/07/2024 1,468

Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.

Suy ra \(\widehat C = \widehat B = 65^\circ \).

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = 180^\circ \)

Suy ra \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {65^\circ + 65^\circ } \right) = 50^\circ \).

+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.

Suy ra \(\widehat M = \widehat N\).

Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:

\(\widehat M + \widehat N + \widehat P = 180^\circ \)

\( \Rightarrow \widehat M + \widehat M = 180^\circ - \widehat P\)\( \Rightarrow 2\widehat M = 180^\circ - \widehat P\)

\( \Rightarrow \widehat M = \frac{{180^\circ - \widehat P}}{2} = \frac{{180^\circ - 75^\circ }}{2} = 52,5^\circ \).

Vậy \(\widehat M = \widehat N = 52,5^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tam giác ABE vuông tại E, do đó: \(\widehat A + \widehat {ABE} = 90^\circ \Rightarrow \widehat {ABE} = 90^\circ - \widehat A\).

Tam giác ACF vuông tại F, do đó: \(\widehat A + \widehat {ACF} = 90^\circ \Rightarrow \widehat {ACF} = 90^\circ - \widehat A\).

Từ đó, suy ra \(\widehat {ABE} = \widehat {ACF}\).

Xét tam giác vuông AEB và tam giác vuông AFC có:

BE = CF (theo giả thiết)

\(\widehat {ABE} = \widehat {ACF}\) (cmt)

Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy tam giác ABC cân tại đỉnh A.

Lời giải

Hướng dẫn giải

Xét tam giác vuông ABH và tam giác vuông ACH có:

AB = AC (∆ABC cân tại đỉnh A)

AH: cạnh chung

Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra \(\widehat {BAH} = \widehat {CAH}\), hay \(\widehat {BAM} = \widehat {CAM}\).

Xét tam giác ABM và ACM có:

AB = AC (∆ABC cân tại đỉnh A)

\(\widehat {BAM} = \widehat {CAM}\)

AM: cạnh chung

Do đó, ∆ABM = ∆ACM (c – g – c).

Suy ra \(\widehat {MBA} = \widehat {MCA}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP