Câu hỏi:

12/07/2024 1,389

Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.

Suy ra \(\widehat C = \widehat B = 65^\circ \).

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = 180^\circ \)

Suy ra \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {65^\circ + 65^\circ } \right) = 50^\circ \).

+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.

Suy ra \(\widehat M = \widehat N\).

Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:

\(\widehat M + \widehat N + \widehat P = 180^\circ \)

\( \Rightarrow \widehat M + \widehat M = 180^\circ - \widehat P\)\( \Rightarrow 2\widehat M = 180^\circ - \widehat P\)

\( \Rightarrow \widehat M = \frac{{180^\circ - \widehat P}}{2} = \frac{{180^\circ - 75^\circ }}{2} = 52,5^\circ \).

Vậy \(\widehat M = \widehat N = 52,5^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.
Media VietJack

Xem đáp án » 13/07/2024 3,462

Câu 2:

Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: \(\widehat {MBA} = \widehat {MCA}\).
Media VietJack

Xem đáp án » 13/07/2024 2,526

Câu 3:

Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

∆AEB và ∆DEC là các tam giác cân đỉnh E.

Media VietJack

Xem đáp án » 13/07/2024 2,407

Câu 4:

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{{AB}}{2}\).

Media VietJack

Xem đáp án » 13/07/2024 2,373

Câu 5:

Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?

a) AB = AC.

b) Tam giác ABC đều.

c) \(\widehat {ABC} = \widehat {ACB}\).

d) Tam giác ABC cân tại đỉnh A.

Xem đáp án » 13/07/2024 1,976

Câu 6:

Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

∆ABD vuông tại B.

Media VietJack

Xem đáp án » 13/07/2024 1,790

Câu 7:

Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:

Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).

Media VietJack

Xem đáp án » 13/07/2024 1,615
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay