Câu hỏi:
13/07/2024 1,251Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:
Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Do tam giác ABC vuông tại A nên AC ⊥ AB tại A.
Tam giác ABD vuông tại B nên DB ⊥ AB tại B.
Suy ra AC // DB (do cùng vuông góc với AB).
\( \Rightarrow \widehat {BDA} = \widehat {CAD}\) (hai góc so le trong).
Lại có: \(\widehat {ACB} = \widehat {BDA}\) (do ∆ABD = ∆BAC).
Do đó, \(\widehat {CAD} = \widehat {ACB}\), hay \(\widehat {CAM} = \widehat {ACM}\).
Suy ra tam giác AMC cân tại đỉnh M.
Khi đó MA = MC.
Mà MB = MC (do M là trung điểm của BC).
Nên MA = MB = MC.
Do đó, tam giác AMB cân tại đỉnh M.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
∆AEB và ∆DEC là các tam giác cân đỉnh E.
Câu 3:
Câu 4:
a) AB = AC.
b) Tam giác ABC đều.
c) \(\widehat {ABC} = \widehat {ACB}\).
d) Tam giác ABC cân tại đỉnh A.
Câu 5:
Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{{AB}}{2}\).
Câu 6:
Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:
∆ABD vuông tại B.
Câu 7:
Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:
Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
Đề thi Học kì 1 Toán 7 CTST có đáp án (Đề 1)
Bài tập: Tập hợp Q các số hữu tỉ có đáp án
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
về câu hỏi!