Câu hỏi:
13/07/2024 312AB // CD.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Theo định lí tổng 3 góc trong tam giác EAB, ta có:
\(\widehat {EBA} + \widehat {EAB} + \widehat {AEB} = 180^\circ \)
Mà \(\widehat {EBA} = \widehat {EAB}\) (chứng minh trên)
Suy ra \(\widehat {EBA} = \frac{{180^\circ - \widehat {AEB}}}{2}\). (1)
Theo định lí tổng 3 góc trong tam giác EDC, ta có:
\(\widehat {EDC} + \widehat {ECD} + \widehat {DEC} = 180^\circ \)
Mà \(\widehat {EDC} = \widehat {ECD}\) (∆ECD cân tại đỉnh E).
Suy ra \(\widehat {EDC} = \frac{{180^\circ - \widehat {DEC}}}{2}\). (2)
Ta lại có: \(\widehat {AEB} = \widehat {DEC}\) (hai góc đối đỉnh). (3)
Từ (1), (2) và (3) suy ra \(\widehat {EBA} = \widehat {EDC}\), hay \(\widehat {DBA} = \widehat {BDC}\).
Mà hai góc này ở vị trí so le trong.
Vậy AB // DC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
∆AEB và ∆DEC là các tam giác cân đỉnh E.
Câu 3:
Câu 4:
a) AB = AC.
b) Tam giác ABC đều.
c) \(\widehat {ABC} = \widehat {ACB}\).
d) Tam giác ABC cân tại đỉnh A.
Câu 5:
Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{{AB}}{2}\).
Câu 6:
Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:
∆ABD vuông tại B.
Câu 7:
Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:
Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
Đề thi Học kì 1 Toán 7 CTST có đáp án (Đề 1)
Bài tập: Tập hợp Q các số hữu tỉ có đáp án
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
về câu hỏi!