Dạng 1. Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng

  • 208 lượt thi

  • 9 câu hỏi

  • 45 phút

Câu 1:

Cho hình vẽ dưới đây:

Cho hình vẽ dưới đây:   Số đường xiên kẻ từ điểm M đến đường thẳng d là: A. 1; B. 2; C. 3; D. 4. (ảnh 1)

Số đường xiên kẻ từ điểm M đến đường thẳng d là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B

Ta có: MA và MB là hai đường xiên kẻ từ điểm M đến đường thẳng d.

Vậy ta chọn đáp án B.


Câu 2:

Cho hình vẽ dưới đây:

Cho hình vẽ dưới đây:   Số đường vuông góc kẻ từ điểm A có trong hình vẽ là: A. 1; B. 2; C. 3; D. 4. (ảnh 1)

Số đường vuông góc kẻ từ điểm A có trong hình vẽ là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C

Ta có AH, AE, AK lần lượtcác đường vuông góc kẻ từ điểm A đến đoạn thẳng HE, DN, MK. Do đó có 3 đường vuông góc kẻ từ điểm A có trong hình vẽ.

Vậy ta chọn đáp án C.


Câu 3:

Cho hình chữ nhật ABCD, điểm E nằm trên cạnh CD. Khẳng định nào sau đây là đúng?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B

Cho hình chữ nhật ABCD, điểm E nằm trên cạnh CD. Khẳng định nào sau đây là đúng? (ảnh 1)

Do ABCD là hình chữ nhật nên AD vuông góc với CD tại D.

Do đó AD là đường vuông góc kẻ từ A đến CD, vậy phương án D sai.

Lại có, E nằm giữa C và D nên AE là đường xiên kẻ từ A đến CD, vậy phương án A sai và phương án B đúng.

Ta có AC không vuông góc với CD nên AC là đường xiên kẻ từ A đến CD, vậy phương án C sai.

Vậy ta chọn phương án B.


Câu 4:

Cho tam giác ABC vuông tại B có AD là tia phân giác của góc BAC (D BC). Biết BD = 3 cm. Khoảng cách từ D đến đường thẳng AC bằng

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC vuông tại B có AD là tia phân giác của góc BAC (D ∈ BC). Biết BD = 3 cm. (ảnh 1)

Kẻ DE AC khi đó DE là khoảng cách từ D đến AC.

Vì AD là tia phân giác của BAC^  nên A^1=A^2.

Xét tam giác ABD và tam giác AED có:

B^=AED^  =90°;

AD là cnh chung;

A^1=A^2 (chứng minh trên).

Suy ra ∆ABD = ∆AED (cạnh huyền – góc nhọn).

Do đó BD = ED (2 cạnh tương ứng).

Mà BD = 3 cm nên DE = 3 cm.

Vậy ta chọn phương án A.


Câu 5:

Cho hình chữ nhật NMQP có MN = 2 cm, MQ = 5 cm. Khoảng cách từ P đến MN và MQ lần lượt là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C

Cho hình chữ nhật NMQP có MN = 2 cm, MQ = 5 cm. Khoảng cách từ P đến MN và MQ lần lượt là: (ảnh 1)

Vì MNPQ là hình chữ nhật nên PQ MQ và PN MN.

Do đó PQ là khoảng cách từ P đến MQ và PN là khoảng cách từ P đến MN.

Lại có PQ = MN = 2 cm, PN = MQ = 5 cm.

Vậy ta chọn phương án C.


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận