Câu hỏi:
11/07/2024 604
Trong các biểu thức sau, biểu thức nào là đa thức một biến?
5 – 2x; 6x2 + 8x3 + 3x – 2; \(\frac{2}{{x - 1}}\) ; \(\frac{1}{4}\)t – 5.
Trong các biểu thức sau, biểu thức nào là đa thức một biến?
5 – 2x; 6x2 + 8x3 + 3x – 2; \(\frac{2}{{x - 1}}\) ; \(\frac{1}{4}\)t – 5.
Câu hỏi trong đề: Giải SBT Toán 7 Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
Ta có:
+ Biểu thức 5 – 2x là đa thức một biến của biến x;
+ Biểu thức 6x2 + 8x3 + 3x – 2 là đa thức một biến của biến x;
+ Biểu thức \(\frac{2}{{x - 1}}\) không phải là đa thức một biến;
+ Biểu thức \(\frac{1}{4}\)t – 5 là đa thức một biến của biến t.
Vậy trong các biểu thức trên, các biểu thức là đa thức một biến là: 5 – 2x; 6x2 + 8x3 + 3x – 2; \(\frac{1}{4}\)t – 5.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(3x3 – 2x2 + 3x – 2) : (x2 + 1)
Thực hiện đặt tính phép chia đa thức như sau:
Vậy (3x3 – 2x2 + 3x – 2) : (x2 + 1) = 3x – 2.
Lời giải
(2x3 + 3x2 + 3x + 4) : (x2 + 2).
Thực hiện đặt tính phép chia đa thức như sau:
Vậy \(\frac{{2{x^3} + 3{x^2} + 3x + 4}}{{{x^2} + 2}} = 2x + 3 - \frac{{x + 2}}{{{x^2} + 2}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.