Câu hỏi:

13/07/2024 720

b) Tìm điều kiện của tam giác ABC để EG là tia phân giác của góc DEM.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) • Xét DABC có ABC^+ACB^+CAB^=180°  (tổng ba góc của một tam giác)

ABC^=ACB^  nên ABC^=ACB^=180°BAC^2   (1)

Ta có AE = AD (chứng minh câu a).

Nên tam giác AED cân tại A.

Suy ra AED^=ADE^

Xét DADE có ADE^+AED^+DAE^=180°  (tổng ba góc của một tam giác)

AED^=ADE^  nên  AED^=ADE^=180°BAC^2 (2)

Từ (1) và (2) suy ra AED^=ABC^

Mà hai góc này ở vị trí đồng vị

Do đó ED // BC.

Nên DEC^=ECM^  (hai góc so le trong)                                      

• Để EG là tia phân giác của góc DEM thì  ECM^=CEM^

Suy ra ECM^=CEM^  nên tam giác MEC cân tại M.

Do đó ME = MC

Mặt khác, MB = MC nên ME = MB = MC.

Suy ra tam giác EMB cân tại M nên MEB^=MBE^ .

• Xét DEBC có BEC^+BCE^+EBC^=180°  (tổng ba góc của một tam giác)

Hay BEC^+MCE^+MBE^=180°

MEC^=MCE^  và MEB^=MBE^

Nên BEC^+MEC^+MEB^=180°  hay  BEC^+BEC^=180°

Suy ra 2BEC^=180°

Do đó BEC^=180°2=90°  nên  AEC^=90°.

• Xét ∆BEC và ∆AEC có:

BEC^=AEC^  (cùng bằng 90°),

EC là cạnh chung,

BE = AE (chứng minh câu a)

Do đó ∆BEC = ∆AEC (hai cạnh góc vuông).

Suy ra BC = AC.

Mà AB = AC (chứng minh câu a).

Do đó AB = BC = AC nên tam giác ABC là tam giác đều.

Vậy điều kiện để EG là tia phân giác của góc DEM là tam giác ABC là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C có CAB^=60° , AE là tia phân giác của góc CAB (E ∈ BC). Gọi D là hình chiếu của B trên tia AE, K là hình chiếu của E trên AB. Chứng minh:

a) EB là tia phân giác của góc DEK, EK là tia phân giác của góc BEA;

Xem đáp án » 13/07/2024 3,362

Câu 2:

Cho hai đường thẳng song song a, b và một đường thẳng c (c cắt a tại E, c cắt b tại F). Hai tia phân giác của các góc aEF và bFE cắt nhau tại I. Gọi A, B lần lượt là hình chiếu của I trên các đường thẳng a và b (Hình 52).

Media VietJack

Chứng minh:

a) Tam giác EIF là tam giác vuông;

Xem đáp án » 13/07/2024 1,398

Câu 3:

Cho tam giác ABC cân tại A có K là trung điểm của đoạn BC. Hai đường phân giác BD và CE cắt nhau tại I. Chứng minh:

a) I cách đều ba cạnh của tam giác ABC;

Xem đáp án » 13/07/2024 911

Câu 4:

Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE.

a) Chứng minh: GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.

Xem đáp án » 13/07/2024 892

Câu 5:

Cho tam giác ABC (AB < AC). Trên tia phân giác của góc A, lấy điểm E nằm trong tam giác ABC sao cho E cách đều hai cạnh AB, BC. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Điểm E không nằm trên tia phân giác của góc B.

Xem đáp án » 13/07/2024 547

Câu 6:

Cho tam giác ABC có ABC^+ACB^=2BAC^  . Hai tia phân giác của góc B và góc C cắt nhau tại K. Trong các phát biểu sau, phát biểu nào sai?

a) Số đo góc KAC bằng 30°.

Xem đáp án » 13/07/2024 546

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn