Câu hỏi:

13/07/2024 2,864 Lưu

Cho tam giác ABC có AB = AC, lấy điểm M trên cạnh BC sao cho BM = CM. Chứng minh hai tam giác ABM và ACM bằng nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét ABM và ACM có:

AB = AC (giả thiết),

BM = CM (giả thiết),

AM là cạnh chung.

Do đó ΔABM = ΔACM (c.c.c).

Vậy ΔABM = ΔACM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

GT

xOy^ nhọn,

A ∈ Ox, B ∈ Ox, OA < OB.

C ∈ Oy, D ∈ Oy, OA = OC, OB = OD.

AD cắt BC tại M.

KL

a) AD = CB;

b) ΔMAB = ΔMCD.

Media VietJack

a) Xét DAOD và DCOB có:

OA = OC (giả thiết),

O^ là góc chung,

OD = OB (giả thiết).

Do đó ΔAOD = ΔCOB (c.g.c).

Suy ra AD = CB (hai cạnh tương ứng).

Vậy AD = CB.

Lời giải

Vì ΔABC = ΔDEF (giả thiết)

Nên BC = EF (hai cạnh tương ứng).

Mà EF = 10 cm (giả thiết).

Suy ra BC = 10 cm.

Chu vi tam giác ABC là:

AB + BC + CA = 9 + 10 + 7 = 26 (cm).

Vậy chu vi tam giác ABC là 26 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP