Câu hỏi:
13/07/2024 892Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OA = OC, OB = OD. Gọi M là giao điểm của AD và CB. Chứng minh rằng:
a) AD = CB;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
GT |
nhọn, A ∈ Ox, B ∈ Ox, OA < OB. C ∈ Oy, D ∈ Oy, OA = OC, OB = OD. AD cắt BC tại M. |
KL |
a) AD = CB; b) ΔMAB = ΔMCD. |
a) Xét DAOD và DCOB có:
OA = OC (giả thiết),
là góc chung,
OD = OB (giả thiết).
Do đó ΔAOD = ΔCOB (c.g.c).
Suy ra AD = CB (hai cạnh tương ứng).
Vậy AD = CB.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho tam giác ABC có AB = AC, lấy điểm M trên cạnh BC sao cho BM = CM. Chứng minh hai tam giác ABM và ACM bằng nhau.
Câu 5:
Nêu thêm điều kiện để hai tam giác trong Hình 14a, 14b bằng nhau theo trường hợp cạnh – góc – cạnh.
Câu 6:
Nêu thêm điều kiện để hai tam giác trong Hình 14a, 14b bằng nhau theo trường hợp cạnh – góc – cạnh.
về câu hỏi!