Câu hỏi:

12/07/2024 594

Cho a,b,c(0; 1), chứng minh rằng ít nhất một trong các bất đẳng thức sau là sai: a(1b)>14, b(1c)>14, c(1a)>14

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử trái lại cả ba bất đẳng thức đều đúng, khi đó nhân theo vế ba bất đẳng thức ta được:

a(1b).b(1c).c(1a)>164a(1a).b(1b).c(1c)>164        (*)

Ta có nhận xét:

a(1a)=aa2=14(a+12)214

Chứng minh tương tự, ta có:

b(1b)14, c(1c)14

Do đó:

a(1a).b(1b).c(1c)164, tức là (*) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c là độ dài ba cạnh của một tam giác vuông với a là cạnh huyền.

Chứng minh rằng: a3>b3+c3

Xem đáp án » 12/07/2024 1,153

Câu 2:

Chứng minh rằng với mọi số thực a, b, c luôn có: a2+b2+c2ab+bc+ca

Xem đáp án » 12/07/2024 708

Câu 3:

Chứng minh rằng với mọi a,b luôn có: a+b2.a2+b22.a3+b32a6+b62

Xem đáp án » 12/07/2024 346

Câu 4:

Chứng minh rằng với mọi n* luôn có: 11.2+12.3+...+1n(n+1)<1

Xem đáp án » 12/07/2024 308

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store