Câu hỏi:

12/07/2024 2,369

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trường hợp hai góc ngoài tại hai đỉnh kề nhau (h.1.5)

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại. (ảnh 1)

Gọi C1^, D1^là số đo hai góc trong; C2^ , D2^ là số đo hai góc ngoài tại hai đỉnh kề nhau là C và D. Ta có:

C2^+D2^=180°C1^+180°D1^=360°C1^+D1^. (1)

Xét tứ giác ABCD có: A^+B^=360°C1^+D1^ (2)

Từ (1) và (2) suy ra: A2^+C2^=B^+D^

Trường hợp hai góc ngoài tại hai đỉnh đối nhau (h.1.6)

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại. (ảnh 2)

Chứng minh tương tự, ta được A2^+C2^=B^+D^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác ABCD có AD = DC = CB; góc C = 130 độ, góc D = 110 độ. Tính số đo góc A, góc B. (ảnh 1)

Vẽ đường phân giác của các góc C^D^chúng cắt nhau tại E.

Xét ΔECDcó CED^=180°110°+130°2=60°

ΔADE=ΔCDE (c.g.c) AED^=CED^=60°

ΔBCE=ΔDCE (c.g.c) BEC^=DEC^=60°

Suy ra AEB^=180°do đó ba điểm A, E, B thẳng hàng

Vậy BAD^=EAD^=ECD^=65°. Do đó ABC^=360°65°+110°+130°=55°

Lời giải

Tứ giác ABCD có góc A = góc C . Chứng minh rằng các đường phân giác của góc B và góc D song song với nhau hoặc trùng nhau. (ảnh 1)

Xét tứ giác ABCD có: B^+D^=360°A^+C^=360°2C^

B1^=B2^, D1^=D2^ nên B1^+D1^=180°C^B1^+D1^+C^=180°(1)

Xét ΔBCM có B1^+M1^+C^=180° (2)

Từ (1) và (2) suy ra D1^=M1^. Do đó DN  // BM.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP