Câu hỏi:

12/07/2024 8,063

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác. (ảnh 1)

Gọi O là giao điểm của hai đường chéo AC và BD của tứ giác ABCD.

Gọi độ dài các cạnh AB, BC, CD, DA lần lượt là a, b, c, d.

Vận dụng bất đẳng thức tam giác ta được: OA+OB>a;  OC+OD>c

Do đó OA+OC+OB+OD>a+c hay AC+BD>a+c(1)

Chứng minh tương tự, ta được: AC+BD>d+b(2)

Cộng từng vế của (1) và (2), ta được:

2AC+BD>a+b+c+dAC+BD>a+b+c+d2

Xét các ΔABCΔADC ta có: AC<a+b;  AC<c+d

2AC<a+b+c+d (3)

Tương tự có: 2BD<a+b+c+d(4)

Cộng từng vế của (3) và (4) được: 2AC+BD<2a+b+c+d

AC+BD<a+b+c+d

Từ các kết quả trên ta được điều phải chứng minh.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng, bất kì hai điểm nào cũng có khoảng cách lớn hơn 10. Chứng minh rằng tồn tại hai điểm đã cho có khoảng cách lớn hơn 14.

Xem đáp án » 12/07/2024 2,364

Câu 2:

Tứ giác ABCD có hai đường chéo vuông góc. Biết AB = 3; BC = 6,6; CD = 6. Tính độ dài AD.

Xem đáp án » 12/07/2024 2,037

Câu 3:

Có hay không một tứ giác mà độ dài các cạnh tỉ lệ với 1, 3, 5, 10 ?

Xem đáp án » 12/07/2024 1,723

Câu 4:

Cho tứ giác ABCD có độ dài các cạnh là a , b , c , d  đều là các số tự nhiên. Biết tổng  S = a + b + c + d chia hết cho a , cho b , cho c , cho d . Chứng minh rằng tồn tại hai cạnh của tứ giác bằng nhau.

Xem đáp án » 12/07/2024 1,678

Câu 5:

Cho tứ giác ABCD và một điểm M thuộc miền trong của tứ giác. Chứng minh:
a) MA + MB + MC + MD ≥  AB + CD;

Xem đáp án » 12/07/2024 800

Câu 6:

Cho tứ giác ABCD. Chứng minh:

a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;

Xem đáp án » 12/07/2024 680
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua