Câu hỏi:

12/07/2024 2,291

Cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng, bất kì hai điểm nào cũng có khoảng cách lớn hơn 10. Chứng minh rằng tồn tại hai điểm đã cho có khoảng cách lớn hơn 14.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trước hết ta chứng minh một bài toán phụ:

Cho ΔABC, ˆA90°. Chứng minh rằng BC2AB2+AC2.

Cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng, bất kì hai điểm nào cũng có khoảng cách lớn hơn 10.  (ảnh 1)

Vẽ BHAC. Vì ˆA90° nên H nằm trên tia đối của tia AC.

Xét ΔHBC và ΔHBA vuông tại H, ta có:

BC2=HB2+HC2=(AB2HA2)+(HA+AC)2=AB2HA2+HA2+AC2+2HA.AC=AB2+AC2+2HA.AC

HA.AC0 nên BC2AB2+AC2 ( dấu “=” xảy ra khi HA tức là khi  ΔABCvuông ).

Vận dụng kết quả trên để giải bài toán đã cho

Trường hợp tứ giác ABCD là tứ giác lồi (h.1.14)

Cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng, bất kì hai điểm nào cũng có khoảng cách lớn hơn 10.  (ảnh 2)

Ta có: ˆA+ˆB+ˆC+ˆD=360°

Suy ra trong bốn góc này phải có một góc lớn hơn hoặc bằng 90°, giả sử ˆA90°

Xét ΔABD ta có BD2AB2+AD2>102+102=200 suy ra BD>200, do đó BD > 14

Trường hợp tứ giác ABCD là tứ giác lõm (h.1.15)

Cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng, bất kì hai điểm nào cũng có khoảng cách lớn hơn 10.  (ảnh 3)

Nối CA, Ta có: ^ACD+^ACB+^BCD=360°.

Suy ra trong ba góc này phải có một góc lớn hơn hoặc bằng 120°.

Giả sử ^ACB120°, do đó ^ACB là góc tù

Xét ΔACB có AB2AC2+BC2>102+102=200

Suy ra AB>200AC>14

Vậy luôn tồn tại hai điểm đã cho có khoảng cách lớn hơn 14.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác.

Xem đáp án » 12/07/2024 7,970

Câu 2:

Tứ giác ABCD có hai đường chéo vuông góc. Biết AB = 3; BC = 6,6; CD = 6. Tính độ dài AD.

Xem đáp án » 12/07/2024 2,010

Câu 3:

Có hay không một tứ giác mà độ dài các cạnh tỉ lệ với 1, 3, 5, 10 ?

Xem đáp án » 12/07/2024 1,707

Câu 4:

Cho tứ giác ABCD có độ dài các cạnh là a , b , c , d  đều là các số tự nhiên. Biết tổng  S = a + b + c + d chia hết cho a , cho b , cho c , cho d . Chứng minh rằng tồn tại hai cạnh của tứ giác bằng nhau.

Xem đáp án » 12/07/2024 1,614

Câu 5:

Cho tứ giác ABCD và một điểm M thuộc miền trong của tứ giác. Chứng minh:
a) MA + MB + MC + MD ≥  AB + CD;

Xem đáp án » 12/07/2024 790

Câu 6:

Cho tứ giác ABCD. Chứng minh:

a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;

Xem đáp án » 12/07/2024 672
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua