Câu hỏi:

12/07/2024 3,090

Cho tam giác ABC có I là giao điểm của ba đường phân giác. Đường thẳng qua I cắt các đường thẳng BC,CA,AB lần lượt tại D,E,F sao cho D,E nằm cùng phía đối với điểm I. Chứng minh rằng: BCID+ACIE=ABIF.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Áp dụng tính chất đường phân giác trong và ngoài của tam giác, ta có:

BDID=BFIF;CEIE=CDID;AFIF=AEIE

Ta có: BCID=BDIDCDID=BFIFCEIE              (1)

Ta có: ACIE=AEIE+CEIE=AFIF+CEIE              (2)

Từ (1) và (2) cộng vế với vế, suy ra:

BCID+ACIE=BFIF+AFIF=ABIF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A (AB < AC), vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Đường thẳng vuông góc với BC tại D cắt AC tại E. Gọi M là trung điểm của BE, tia AM cắt BC tại G. Chứng minh: BGBC=HDAH+HC.

Xem đáp án » 12/07/2024 3,814

Câu 2:

Cho tam giác ABC vuông tại A có G là trọng tâm, BM là đường phân giác. Biết rằng GMAC. Chứng minh rằng BM vuông góc với trung tuyến AD.

Xem đáp án » 12/07/2024 3,413

Câu 3:

Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC), N là trung điểm của AB. Biết AB=6cm, AC=8cm.Vẽ AK là tia phân giác của góc BAC^ (K thuộc BC). Tính AK?

Xem đáp án » 12/07/2024 2,255

Câu 4:

Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC), N là trung điểm của AB. Biết AB=6cm, AC=8cm. Gọi E là hình chiếu vuông góc của H lên AC và T là điểm đối xứng của N qua I với I là giao điểm của CN và HE. Chứng minh tứ giác NETH là hình bình hành.

Xem đáp án » 12/07/2024 1,188

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL