Câu hỏi:

12/07/2024 16,338

Cho tam giác ABC vuông tại A (AB < AC), vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Đường thẳng vuông góc với BC tại D cắt AC tại E. Gọi M là trung điểm của BE, tia AM cắt BC tại G. Chứng minh: BGBC=HDAH+HC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

BGBC=HDAH+HC

 BCBG=AH+HCHD=1+HCHD

BCBG1=HCHDBCBGBG=HCHDGCGB=HCHD

Ta chứng minh: HCHD=GCGB. Ta có: DE // AH HCHD=ACAE.

Dựng đường thẳng qua E vuông góc AH tại I, suy ra HIED là hình chữ nhật.

IE = HD = HA; IAE^=HBA^ do đó hai tam giác vuông IEA và HBA bằng nhau.

AE=ABHCHD=ACAE=ACAB.

Vì M là trung điểm BE, tam giác ABE cân tại A nên AM là tia phân giác góc BAC^ hay G là chân đường phân giác trong góc ABC trong tam giác ABC. Từ đó ta có:

GCGB=ACAB. Vậy HCHD=ACAE=ACAB=GCGB.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có G là trọng tâm, BM là đường phân giác. Biết rằng GMAC. Chứng minh rằng BM vuông góc với trung tuyến AD.

Xem đáp án » 12/07/2024 5,518

Câu 2:

Cho tam giác ABC có I là giao điểm của ba đường phân giác. Đường thẳng qua I cắt các đường thẳng BC,CA,AB lần lượt tại D,E,F sao cho D,E nằm cùng phía đối với điểm I. Chứng minh rằng: BCID+ACIE=ABIF.

Xem đáp án » 12/07/2024 4,914

Câu 3:

Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC), N là trung điểm của AB. Biết AB=6cm, AC=8cm.Vẽ AK là tia phân giác của góc BAC^ (K thuộc BC). Tính AK?

Xem đáp án » 12/07/2024 3,938

Câu 4:

Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC), N là trung điểm của AB. Biết AB=6cm, AC=8cm. Gọi E là hình chiếu vuông góc của H lên AC và T là điểm đối xứng của N qua I với I là giao điểm của CN và HE. Chứng minh tứ giác NETH là hình bình hành.

Xem đáp án » 12/07/2024 1,688
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua