Câu hỏi:

11/07/2024 1,309

Cho hình thang ABCD có AB // CD (AB < CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với hai đáy của hình thang cắt hai đường chéo BD và AC tại E và F, cắt BC tại N.

a, Chứng minh rằng N, E, F lần lượt là trung điểm của BC, BD, AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang  ABCD có AB // CD (AB < CD) và M là trung điểm của AD. a, Chứng minh rằng N, E, F lần lượt là trung điểm của BC, BD, AC. (ảnh 1)

a) Xét hình thang ABCD  có MA = MD ; NBC,MN//AB//CD(gt) => N là trung điểm của BC 

Xét ΔADC  có MA = MD; MF // DC => FA = FC

Xét ΔADB  có MA = MD; MF // DC => ED = EB

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang ABCD (AB//CD), tia phân giác của góc C đi qua trung điểm M của cạnh bên AD. a) góc BMC = 90 độ (ảnh 1)

a) Gọi N là trung điểm BC.

Ta có MN//CDMCD^=CMN^ 

MCD^=MCN^ (vì CM là phân giác  )

Suy ra CMN^=MCN^=12DCB^ 

Tam giác MCN cân tại N MN=NC=NB , do đó MNB cân tại N NMB^=NBM^ . Mặt khác NMB^=MBA^ , suy ra NMB^=12ABC^ 

BMC^=CMN^+NMB^=12(BCD^+ABC^)=90°

 

Lời giải

Cho tam giác ABC, AM là trung tuyến. Vẽ đường thẳng d qua trung điểm I của AM cắt các cạnh AB, AC. Gọi A', B', C' thứ tự là hình chiếu của A, B, C (ảnh 1)

Gọi N là hình chiếu của M trên d.

Xét tứ giác BB'C'C  có BB' // CC' (cùng vuông góc d)

=> BB'C'C là hình thang.

M là trung điểm BC và MN // BB' // CC' (cùng vuông góc d)

=> MN là đường trung bình của hình thang => BB'C'C

BB'+CC'=2MN    (1) 

Chứng minh được ΔAA'I=ΔMNI(g.c.g)AA'=MN    (2)

Từ (1); (2)suy ra BB' + CC' = 2AA'

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay