Câu hỏi:

12/07/2024 4,056

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh: tam giác AEF đồng dạng với ABC, tam giác BDF đồng dạng với EDC

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

ΔCFAΔBEAFAEA=ACAB 

Xét ΔAEF ΔABC có:  FAAE=ACAB(cmt)A^(chung)ΔAEFΔABC(cgc) 

Chứng minh tương tự ta có ΔBDFΔBACΔBACΔEDCΔBDFΔEDC (t/c..)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh: 

Điểm H cách đều 3 cạnh của  tam giác DEF

Xem đáp án » 13/07/2024 9,947

Câu 2:

Cho tam giác ABC có  B^=2.C^, AB = 4 cm, AC = 8 cm, Tính độ dài cạnh BC ?

Xem đáp án » 13/07/2024 2,635

Câu 3:

Cho tam giác ABC. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho AM, BN, CP đồng qui tại O. Qua A và C vẽ các đường thẳng song song với BO cắt CO, OA lần lượt ở E và F.

Chứng minh: MBMC.NCNA.PAPB=1

Xem đáp án » 11/07/2024 1,790

Câu 4:

Cho hình thang ABCD có AB//CD, AB=4cm , DB = 6cm và A^=CBD^. Tính độ dài CD.

Xem đáp án » 12/07/2024 1,604

Câu 5:

Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD.

Đường thẳng qua O, vuông góc với AB, CD theo thứ tự tại H, K. Chứng minh OHOK=ABCD

Xem đáp án » 12/07/2024 1,323

Câu 6:

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh:AD.BC=BE.AC=CF.AB

 

Xem đáp án » 12/07/2024 1,271

Bình luận


Bình luận