Câu hỏi:

13/07/2024 11,847

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh: 

Điểm H cách đều 3 cạnh của  tam giác DEF

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

ΔAHBΔAFDABH^=FDA^ΔAHBΔEHDABH^=EDH^FDA^=EDH^DH là tia phân giác  FDE^(3)

Lại có: FEB^=FAD^  (cùng phụ với AEF^=FDB^)

Mà:  HAB^=HED^(cmt)

FEB^=HED^ EH là tia phân giác FED^  (4)

Từ (3) và (4) suy ra: H là giao điểm của 3 đường phân giác trong tam giác FED hay H cách đều 3 cạnh của tam giác FED

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh: tam giác AEF đồng dạng với ABC, tam giác BDF đồng dạng với EDC

Xem đáp án » 12/07/2024 5,365

Câu 2:

Cho tam giác ABC có  B^=2.C^, AB = 4 cm, AC = 8 cm, Tính độ dài cạnh BC ?

Xem đáp án » 13/07/2024 3,392

Câu 3:

Cho tam giác ABC. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho AM, BN, CP đồng qui tại O. Qua A và C vẽ các đường thẳng song song với BO cắt CO, OA lần lượt ở E và F.

Chứng minh: MBMC.NCNA.PAPB=1

Xem đáp án » 11/07/2024 2,119

Câu 4:

Cho ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau ở H. Chứng minh:AD.BC=BE.AC=CF.AB

 

Xem đáp án » 12/07/2024 1,891

Câu 5:

Cho hình thang ABCD có AB//CD, AB=4cm , DB = 6cm và A^=CBD^. Tính độ dài CD.

Xem đáp án » 12/07/2024 1,742

Câu 6:

Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD.

Đường thẳng qua O, vuông góc với AB, CD theo thứ tự tại H, K. Chứng minh OHOK=ABCD

Xem đáp án » 12/07/2024 1,659