Câu hỏi:

12/07/2024 762

Cho hình thang ABCD, AB là đáy nhỏ. Gọi M, N, P, Q lần lượt là trung điểm của AD , BC, BD và AC.
a) Chứng minh rằng bốn điểm M, N, P, Q thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang  ABCD, AB  là đáy nhỏ. Gọi M, N, P, Q lần lượt là trung điểm của AD , BC, BD và AC . a) Chứng minh rằng bốn điểm M, N, P, Q thẳng hàng. (ảnh 1)

a) Xét ΔABDcó MP là đường trung bình MP//ABMP//CD

Xét ΔADC có MQ là đường trung bình => MQ // CD

Xét hình thang ABCD có MN là đường trung bình => MN // CD

Qua điểm M có các đường thẳng MP, MQ, MN cùng song song với CD nên các đường thẳng trùng nhau, suy ra bốn điểm M, N, P, Qthẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC  a) Chứng minh: AD = 1/2DC (ảnh 1)

a) Qua M kẻ MN // BD.

Trong ΔAMN, có I là trung điểm của AM, IDMNAD=DN.

Trong ΔBCD, có M là trung điểm của BC,  MNBDND=NC.

AD=DN=NCAD=12DC.

Lời giải

Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi G là trọng tâm của tam giác BCD. Chứng minh AG chia đôi MN. (ảnh 1)

Gọi O là giao điểm của AG và MN

Gọi H là trung điểm của BG

Theo tính chất của trọng tâm, ta có: BH = HG = GN

Xét ΔABG có MH là đường trung bình => MH // AG

Xét ΔHMN có AG // MH và NG = GH nên ON = OM

Vậy AG chia đôi NM.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP