Câu hỏi:

13/07/2024 557

Cho tam giác ABD. Vẽ điểm C đối xứng với A qua BD. Vẽ các đường phân giác ngoài tại các đỉnh A, B, C, D của tứ giác ABCD chúng cắt nhau tạo thành tứ giác EFGH.

a) Xác định dạng của tứ giác EFGH;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABD. Vẽ điểm C đối xứng với A qua BD.. a) Xác định dạng của tứ giác EFGH; (ảnh 1)

a) Vì C đối xứng với A qua BD nên ΔABDđối xứng với ΔCBD qua BD.

Do đó ΔABD=ΔCBD, suy ra: B1^=B2^;D1^=D2^; BA=BC DA=DC.


Ta có BD và BE là các tia phân giác trong và ngoài tại đỉnh B nên BDBE.

Chứng minh tương tự, ta được: BDDH.

Suy ra EF // HG => Tứ giác EFGH là hình thang.

Ta có D3^=D4^ (cùng phụ với hai góc bằng nhau).

A1^=C1^ (một nửa của hai góc bằng nhau).

Suy ra H^=G^

Hình thang EFGH có hai góc kề một đáy bằng nhau nên là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Vẽ điểm D đối xứng với A qua điểm B. Vẽ điểm E đối xứng với B qua C. Vẽ điểm F đối xứng với C qua A. Chứng minh rằng tam giác ABC và tam giác DEF có cùng một trọng tâm.

Xem đáp án » 13/07/2024 5,785

Câu 2:

Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là các điểm nằm trên các cạnh BC, CA, AB. Xác định vị trí của D, E, F để chu vi tam giác DEF nhỏ nhất.

Xem đáp án » 13/07/2024 2,391

Câu 3:

Cho tam giác ABC, đường phân giác AD và một điểm M ở trong tam giác. Vẽ các điểm N, P, A' đối xứng với M lần lượt qua AB, AC và AD.

a) Chứng minh rằng N và P đối xứng qua AA';

Xem đáp án » 13/07/2024 1,316

Câu 4:

Cho tứ giác ABCD và một điểm M nằm giữa A và B. Chứng minh rằng MC + MD nhỏ hơn số lớn nhất trong hai tổng AC + AD; BC + BD.

Xem đáp án » 13/07/2024 1,019

Câu 5:

b) Xác định vị trí của D để MN có độ dài ngắn nhất.

Xem đáp án » 13/07/2024 853

Câu 6:

Cho góc xOy khác góc bẹt và một điểm G ở trong góc đó. Dựng điểm AOx, điểm BOy sao cho G là trọng tâm của tam giác OAB.

Xem đáp án » 13/07/2024 554

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store