Câu hỏi:

13/07/2024 1,160

Cho tứ giác ABCD và một điểm M nằm giữa A và B. Chứng minh rằng MC + MD nhỏ hơn số lớn nhất trong hai tổng AC + AD; BC + BD.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trước hết ta chứng minh bài toán phụ:

Cho tứ giác ABCD và một điểm M nằm giữa A và B. Chứng minh rằng MC + MD nhỏ hơn số lớn nhất trong hai tổng AC + AD; BC + BD. (ảnh 1)

Cho tam giác ABC, điểm M ở trong tam giác (hoặc ở trên một cạnh nhưng không trùng với các đỉnh của tam giác). Chứng minh rằng MB+MC<AB+AC(h.7.15).

Thật vậy, xét ΔABD, ta có BD<AB+AD hay MB+MD<AB+AD.                                        (1)

Xét ΔMCD có MC < DC + MD.                         (2)

Cộng từng vế của (1) và (2) ta được:

MB+MD+MC<AB+AD+DC+MDMB+MC<AB+AC

Bất đẳng thức trên vẫn đúng nếu điểm M nằm trên một cạnh nhưng không trùng với đỉnh của tam giác.

Bây giờ ta vận dụng kết quả trên để giải bài toán đã cho.

Cho tứ giác ABCD và một điểm M nằm giữa A và B. Chứng minh rằng MC + MD nhỏ hơn số lớn nhất trong hai tổng AC + AD; BC + BD. (ảnh 2)

Vẽ điểm E đối xứng với D qua đường thẳng AB (h.7.16).

Khi đó AE = AD; ME = MD và BE = BD.

Vì điểm M nằm giữa A và B nên hoặc điểm M nằm trong ΔBEC hoặc điểm M nằm trong ΔAEC hoặc điểm M nằm trên cạnh EC.

Ta có ME+MC<AE+ACME+MC<BE+BC hay MD+MC<AD+ACMD+MC<BD+BC.

Do đó MD+MC<maxAD+AC;BD+BC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Vẽ điểm D đối xứng với A qua điểm B. Vẽ điểm E đối xứng với B qua C. Vẽ điểm F đối xứng với C qua A. Chứng minh rằng tam giác ABC và tam giác DEF có cùng một trọng tâm.

Xem đáp án » 13/07/2024 6,733

Câu 2:

Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là các điểm nằm trên các cạnh BC, CA, AB. Xác định vị trí của D, E, F để chu vi tam giác DEF nhỏ nhất.

Xem đáp án » 13/07/2024 2,796

Câu 3:

Cho tam giác ABC, đường phân giác AD và một điểm M ở trong tam giác. Vẽ các điểm N, P, A' đối xứng với M lần lượt qua AB, AC và AD.

a) Chứng minh rằng N và P đối xứng qua AA';

Xem đáp án » 13/07/2024 1,534

Câu 4:

b) Xác định vị trí của D để MN có độ dài ngắn nhất.

Xem đáp án » 13/07/2024 994

Câu 5:

Cho tam giác ABD. Vẽ điểm C đối xứng với A qua BD. Vẽ các đường phân giác ngoài tại các đỉnh A, B, C, D của tứ giác ABCD chúng cắt nhau tạo thành tứ giác EFGH.

a) Xác định dạng của tứ giác EFGH;

Xem đáp án » 13/07/2024 663

Câu 6:

Cho góc xOy khác góc bẹt và một điểm G ở trong góc đó. Dựng điểm AOx, điểm BOy sao cho G là trọng tâm của tam giác OAB.

Xem đáp án » 13/07/2024 658
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua