Câu hỏi:

16/10/2022 512 Lưu

Cho tam giác  ABC. Gọi D là điểm đối xứng với A qua C, E là điểm đối xứng với  B qua A, F là điểm đối xứng với C qua B. Gọi BM là trung tuyến của tam giác ABC, EK là trung tuyến của tam giác DEF.  

a) Chứng minh rằng ABKM là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác  ABC. Gọi D là điểm đối xứng với A qua C, E là điểm đối xứng với  B a) Chứng minh rằng ABKM là hình bình hành. (ảnh 1)

a) BK là đường trung bình của tam giác CFD. Suy ra BK//CD, BK=12CD 

Mà CD = CA, AM=12CA  =>  BK // AM, BK = AM

Suy ra tứ giác ABKM là hình bình hành

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Vẽ E là điểm đối xứng của A qua B, F là điểm đối xứng của A qua D.  (ảnh 1)

E là điểm đối xứng của A qua B (gt) nên AB = BE

Tứ giác ABCD là HBH =>ABCDAB=CD 

Mà AB = BE (cmt)BECDBE=CD  => Tứ giác BDCE là hình bình hành

=> BD // EC và BD = EC.

Chứng minh tương tự cũng có BD // CF và BD = CF.

Vì BD // EC và BD // CF => E, C, F thẳng hàng (tiên đề Ơ-clit) Mà EC = CF (= BD) nên C là trung điểm EF => E là điểm đối xứng của F qua C.

Lời giải

Cho góc xOy khác góc bẹt và điểm M nằm trong góc đó. Hãy dựng qua M một đường thẳng cắt Ox ở A, (ảnh 1)

Cách dựng:

-                Dựng điểm I đối xứng với O qua điểm M.

-                Qua I dựng đường thẳng song song với Oy cắt Ox ở A.

-                Dựng đường thẳng AM cắt Oy ở B.

Chứng minh:

Xét ΔMAI ΔMBO có:

O1^=I1^ ( hai góc so le trong)

MO = MI ( Vì I và O đối xứng nhau qua M)

M1^=M2^ ( hai góc đối đỉnh)

=> ΔMAI=ΔMBO (g.c.g) => MA = MB ( 2 cạnh tương ứng)

Bài toán luôn luôn dựng được một và có một nghiệm hình.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP