Câu hỏi:
16/10/2022 449
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
a) Chứng minh EFGH là hình bình hành.
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
a) Chứng minh EFGH là hình bình hành.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 11: Hình chữ nhật có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: là đường trung bình của và (1)
Ta có: là đường trung bình của và (2)
Từ (1), (2) suy ra EF // HG và EF = HG
Vậy EFGH là hình bình hành (3)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có:
GM = GP (vì P là điểm đối xứng của M qua G) (1)
GN = GQ ( vì Q là điểm đối xứng của N qua G) (2)
Từ (1), (2) suy ra MNPQ là hình bình hành ( vì có G là trung điểm của hai đường chéo MP và NQ )
Lời giải
b) Nếu cân tại A thì AB = AC, khi đó ta có
=> MB = NC vì thế ta lại có MP = NQ. Từ giác MNPQ là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.