Câu hỏi:

16/10/2022 328

Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA 

a) Chứng minh EFGH là hình bình hành.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau.   a) Chứng minh EFGH là hình bình hành. (ảnh 1)

a) Ta có: EA=EBgtFB=FCgtEF là đường trung bình của ΔBACEF//AC và EF=12AC (1)

Ta có: HA=HDgtGC=GDgtHG là đường trung bình của ΔDACHG//AC và HG=12AC (2)

Từ (1), (2) suy ra EF // HG và EF = HG 

Vậy EFGH là hình bình hành (3) 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, các trung tuyến BM và CN cắt nhau tại G. Gọi P là điểm đối xứng của M qua G, gọi Q là điểm đối xứng của N qua G.

a) Tứ giác MNPQ là hình gì? Vì sao?

Xem đáp án » 13/07/2024 6,202

Câu 2:

b) Nếu ABC cân ở A thì tứ giác MNPQ là hình gì? Vì sao?

Xem đáp án » 13/07/2024 1,870

Câu 3:

Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lần lượt lấy các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC MAB. 

a) Chứng minh  PM = CQ.

Xem đáp án » 16/10/2022 766

Câu 4:

b) Chứng minh tứ giác PCQM là hình chữ nhật.

Xem đáp án » 13/07/2024 596

Câu 5:

b) Tứ giác EFGH là hình gì?

Xem đáp án » 16/10/2022 475

Bình luận


Bình luận