Câu hỏi:

11/07/2024 2,365

b) Tìm giá trị của m để hai nghiệm của phương trình thỏa hệ thức  x2x1=x12

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Theo câu a,  Δ'>0,mnên phương trình luôn có hai nghiệm x1,x2  thỏa hệ thức Vi-ét:  

S=x1+x2=ba=2m2=2m2=2m4P=x1.x2=ca=2m

x1  là nghiệm của phương trình nên ta có x122m2x12m=0x12=2m2x1+2m

Theo đề toán: x2x1=x12x2x1=2m2x1+2m

2m4x1x1=2m2x1+2m42x1=2m4x1x1=422mx1=21m

Thayx1=21m  vào (1),ta được: 21m22m221m2m=0

41m24m21m1m22m1m21m2=044m2+3m22m12m+m2=04+4m212m+82m+4m22m3=02m38m2+14m12=0m34m2+7m6=0m2m22m+3=0m=2.

Vậy m=2  là giá trị cần tìm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x4(m2+4m)x2+7m1=0 . Định m để phương trình có 4 nghiệm phân biệt và tổng bình phương tất cả các nghiệm bằng 10

Xem đáp án » 13/07/2024 20,159

Câu 2:

b) Tìm m để phương trình có hai nghiệm nghịch đảo nhau.

Xem đáp án » 13/07/2024 17,232

Câu 3:

Tỉm giá trị m để phương trình:

a) 2x2+mx+m3=0  có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.

Xem đáp án » 13/07/2024 14,046

Câu 4:

f) Định m để phương trình có hai nghiệm x1;x2  thỏa mãn  2x1x2=2

Xem đáp án » 13/07/2024 13,991

Câu 5:

e) Định m để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia

Xem đáp án » 13/07/2024 13,259

Câu 6:

g) Định m để PT có hai nghiệm x1;x2  sao cho A=2x12+2x22x1x2  nhận giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 11,884

Câu 7:

b) Định m để hai nghiệm x1, x2của phương trình đã cho thỏa mãn: x1x22=x13x2.

Xem đáp án » 13/07/2024 11,469
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua