Câu hỏi:
13/07/2024 4,528
Cho tam giác ABC có AC = 2.AB, đường trung tuyến BM. Gọi H là chân đường vuông góc kẻ từ C đến tia phân giác của góc A. Chứng minh rằng ABHM là hình thoi.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 14: Hình thoi có đáp án !!
Quảng cáo
Trả lời:

+ Xét tam giác AHC vuông tại H có HM là đường trung tuyến => HM = MA = MC .
+ Ta có: (c-g-c) => HM = HB
+ Xét tứ giác ABGM có: AB = BH = HM = MA => ABHM là hình thoi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

(cạnh huyền, góc nhọn)
=> AE = AF và BE = CF .
Vì H là trực tâm của ABC nên AH là đường cao, đồng thời là đường trung tuyến, từ đó GB = GC và DE = DF.
Xét EBC có GN // BE (cùng vuông góc với AC) và GB = GC nên NE = NC.
Chứng minh tương tự ta được MF = MB .
Dùng định lí đường trung bình của tam giác ta chứng minh được DM // GN và DM = GN nên tứ giác DNGM là hình bình hành.
Mặt khác, DM = DN (cùng bằng của hai cạnh bằng nhau) nên DNGM là hình thoi.
Lời giải

1) Ta có: AB = AD ( vì ABCD là hình thoi)
Và
Suy ra: ABD là tam giác đều.
Mà nên H là trung điểm của AD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.