Câu hỏi:

12/07/2024 680

c) Xác định m để phương trình có hai nghiệm thỏa mãn  3<x1<x2<6

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Theo trên phương trình đã cho luôn có hai nghiệm phân biệt thỏa: x1+x2=2m+3x1.x2=m2+3m+2

3<x1<x2<6  nên  3<x1<x2x1<x2<60<x1+3<x2+3x16<x26<0

 

   (x1+3)+(x2+3)>0(x1+3)(x2+3)>0(x16)+(x26)<0(x16)(x26)>0x1+x2+6>0x1.x2+3.(x1+x2)+9>0x1+x212<0x1.x26(x1+x2)+36>0

2m+3+6>0m2+3m+2+3(2m+3)+9>02m+312<0m2+3m+26(2m+3)+36>02m+9>0m2+9m+20>02m9<0m29m+20>0m>92(m+4)(m+5)>0m<92(m4)(m5)>0

m>92m<5m>4m<92m<4m>54<m<4

   

Vậy4<m<4

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt X=x2X0

Phương trình trở thành X4(m2+4m)X2+7m1=0  (1)

Phương trình có 4 nghiệm phân biệt Û (1) có 2 nghiệm phân biệt dương         

  Δ>0S>0P>0   (I)   m2+4m24(7m1)>0m2+4m>07m1>0

Với điều kiện (I), (1) có 2 nghiệm phân biệt dương , .

Þ Phương trình đã cho có 4 nghiệm

x1,2=±X1 ;

x3,4=±X2

x12+x22+x32+x42=2(X1+X2)=2(m2+4m)

Vậy ta có 2(m2+4m)=10m2+4m5=0m=1m=5

Với m=1 , (I) thỏa mãn

Với m=5 , (I) không thỏa mãn.        

Vậy  m=1 là giá trị cần tìm.

Lời giải

b) Xét phương trình mx25m2x+6m5=0

Để để phương trình có hai nghiệm nghịch đảo nhau thì:

a0Δ>0x1.x2=1m05m224.m.6m5>06m5m=1

m0m2+4>06m5=m(luôn đúng với m ) m=1  (thỏa mãn)

Vậy m=1 thì phương trình có hai nghiệm nghịch đảo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP