Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 15: Hình vuông có đáp án !!
Quảng cáo
Trả lời:
b) Chứng minh tương tự câu a, ta có BCFE cũng là hình vuông. Do đó hai tam giác MEF và NEF là hai tam giác vuông cân tại M, N. từ đó suy ra EMFN là hình vuông.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi I là giao điểm của DE và CF.
Xét hai tam giác ADE và DCF có:
AD = DC (vì ABCD là hình vuông).
.
AE = DF (theo giả thiết)
Vậy , khi đó ta có:
DE = CF và .
Mặt khác , suy ra .
Vậy .
Lời giải

MA là phân giác góc BMK nên MA là trục đối xứng của hai đường thẳng MK và MB.
Gọi I là điểm đối xứng của K qua MA, suy ra I thuộc đường thẳng BC.
Ta có , .
Hai tam giác vuông ABI và ADK có hai cạnh bằng nhau nên .
Từ đó ta có .
.
Vậy ta có: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.