Cho tam giác ABC vuông tại C và BC < CA. Gọi I là điểm trên AB và IB < IA. Kẻ đường thẳng d đi qua I và vuông góc với AB. Gọi giao điểm của d với AC, BC lần lượt là F và E. Gọi M là điểm đối xứng với B qua I.
a) Chứng minh rằng tam giác IME đồng dạng với tam giác IFA và IE. IF = IA. IB
a) Chứng minh rằng tam giác IME đồng dạng với tam giác IFA và IE. IF = IA. IB
Quảng cáo
Trả lời:

cân tại M
Mà ( cùng phụ với )
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có D là giao điểm thứ nhất của (O) và (O')
Dễ thấy là hình chữ nhật và ED là đường kính của (O)
Nên (góc nội tiếp chắn nửa cung đường tròn)
Mặt khác CD là đường kính của (O')
nên (góc nội tiếp chắn nửa đường tròn)
hay ba điểm thẳng hàng.
Lời giải

Trong đường tròn (O) ta có:
Mặt khác trong đường tròn (M) có:
(góc nội tiếp bằng nửa góc ở tâm cùng chắn một cung).
(1)
Tương tự ta có: (2)
Do MA và MB là tiếp tuyến của (O) nên:
Hay
Hay (3)
Từ (1), (2) và (3) ta có:
Vậy ba điểm thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.