Cho đường tròn (O), M là điểm ở ngoài (O), hai tiếp tuyến MAvà MB( A, B là hai tiếp tuyến), C là một điểm trên đường tròn tâm M bán kính MA và nằm trong đường tròn (O). Các tia AC và BC cắt đường tròn (O) lần lượt tại E và D.
Chứng minh ba điểm D,O,E thẳng hàng.
Cho đường tròn (O), M là điểm ở ngoài (O), hai tiếp tuyến MAvà MB( A, B là hai tiếp tuyến), C là một điểm trên đường tròn tâm M bán kính MA và nằm trong đường tròn (O). Các tia AC và BC cắt đường tròn (O) lần lượt tại E và D.
Chứng minh ba điểm D,O,E thẳng hàng.
Quảng cáo
Trả lời:

Trong đường tròn (O) ta có:
Mặt khác trong đường tròn (M) có:
(góc nội tiếp bằng nửa góc ở tâm cùng chắn một cung).
(1)
Tương tự ta có: (2)
Do MA và MB là tiếp tuyến của (O) nên:
Hay
Hay (3)
Từ (1), (2) và (3) ta có:
Vậy ba điểm thẳng hàng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có D là giao điểm thứ nhất của (O) và (O')
Dễ thấy là hình chữ nhật và ED là đường kính của (O)
Nên (góc nội tiếp chắn nửa cung đường tròn)
Mặt khác CD là đường kính của (O')
nên (góc nội tiếp chắn nửa đường tròn)
hay ba điểm thẳng hàng.
Lời giải
a)

Xét có nên BC vừa là đường cao vừa là đường trung tuyến, do đó cân tại B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.