Cho tam giác nhọn ABC .Từ một điểm I nằm trong tam giác ta kẻ IM ^ BC, IN ^ AC , IK ^AB . Đặt AK =x ; BM = y ; CN = z.Tìm vị trí của I sao cho tổng x2 +y2 +z2 nhỏ nhất.
Câu hỏi trong đề: Bài tập Toán 9 Chủ đề 7: Cực trị hình học có đáp án !!
Quảng cáo
Trả lời:

Đặt BK = k , CM = m , AN = n ,
BC = a , AC = b , AB = c .
x2 +y2 +z2 =
=(IA2 - IK2 ) + (IB2 - IM2 ) + (IC2 - IN2 )
= (IA2 - IN2 ) + (IB2 - IK2 ) + (IC2 - IM2 ) = n2 + k2 + m2
Þ 2(x2 +y2 +z2 ) = x2 +y2 +z2 + n2 + k2 + m2
= ( x2+ k2 )+( y2+ m2 )+( z2 + n2 )
x2+ k2 ≥ y2+ m2 ≥
z2 + n2 ≥
Þ x2 +y2 +z2 ≥ .
min(x2 +y2 +z2 ) = Û x = k , y = m , z = n.
Û I là giao điểm của các đường trung trực của DABC.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt CM = m , CN = n , MN = x
m + n + x = 2CD = 2a và m2 +n2 = x2
Do đó : x2= m2 +n2 ≥
2x2 ≥ ( 2a - x)2 Þ ≥ 2a - x
x ≥
min MN =2a Û m = n . Khi đó tiếp tuyến MN // BD , AM là tia phân giác của
AN là phân giác của
Lời giải
Kẻ AH ^BC , IE ^AH
ANIK ,IMHE là các hình chữ nhật.
IK2+ IN2 = IK2 +AK2 = AI2 ≥ AE2
nên IK2+ IN2 + IM2 = AI2 +EH2 ≥ AE2+EH2
Đặt AE = x , EH =y ta có :
Þ IK2+ IN2 + IM2 ≥ .
Dấu “=” xảy ra khi I là trung điểm của đường cao AH.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.