Câu hỏi:

24/10/2022 1,067

Cho tam giác nhọn ABC .Từ một điểm I nằm trong tam giác ta kẻ IM ^ BC, IN ^ AC , IK ^AB . Đặt AK =x ; BM = y ; CN = z.Tìm vị trí của I sao cho tổng x2 +y2 +znhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Đặt BK = k , CM = m , AN = n ,

BC = a , AC = b , AB = c .

x2 +y2 +z2 =

=(IA2 - IK2 ) + (IB2 - IM2 ) + (IC2 - IN2 )

= (IA2 - IN2 ) + (IB2 - IK2 ) + (IC2 - IM2 ) = n2 + k2 + m2

Þ 2(x2 +y2 +z2 ) = x2 +y2 +z2 + n2 + k2 + m2

= ( x2+ k2 )+( y2+ m2 )+( z2 + n2 )

x2+ k2x+k22=AB22=c22 y2+ m2y+m22=BC22=a22            

z2 + n2  z+n22=AC22=b22

Þ   x2 +y2 +z2  a2+b2+c24.

min(x2 +y2 +z2 ) = a2+b2+c24    Û   x = k , y = m , z = n.

Û I là giao điểm của các đường trung trực của DABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt CM = m , CN = n , MN = x

m + n + x = 2CD = 2a và m2 +n2 = x2

Do đó : x2= m2 +n2

2x2 ≥ ( 2a - x)2 Þ  ≥ 2a - x

   x ≥  

   min MN =2a  Û m = n . Khi đó tiếp tuyến MN // BD , AM là tia phân giác của

   AN là phân giác của

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP