Câu hỏi:

24/10/2022 624

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A .Qua A vẽ hai tia vuông góc với nhau , chúng cắt các đường tròn (O) , (O’) lần lượt tại B và C. Xác định vị trí của các tia đó để D ABC có diện tích lớn nhất .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Kẻ OD ^ AB ; O’E ^ AC ta có:

SABC  = AB.AC = .2AD.2AE= 2.AD.AE

Đặt OA =R ; O’A = r ;

AD = R sina ; AE = r cosa

Þ SABC  = Rr. 2sina .cosa  

2sina .cosa £ sin2a + cos2a =1

Þ   SABC   £ Rr

Þ   Do đó :

max SABC  = Rr Û sina = cosa Û sina = sin( 900- a ) Û a = 900 - a Û a = 450.

Vậy nếu ta vẽ các tia AB,AC lần lượt tạo với các tia AO, AO’ thành các góc thì D ABC có diện tích lớn nhất .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt CM = m , CN = n , MN = x

m + n + x = 2CD = 2a và m2 +n2 = x2

Do đó : x2= m2 +n2

2x2 ≥ ( 2a - x)2 Þ  ≥ 2a - x

   x ≥  

   min MN =2a  Û m = n . Khi đó tiếp tuyến MN // BD , AM là tia phân giác của

   AN là phân giác của

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP