Câu hỏi:

06/11/2022 870

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chọn khẳng định đúng?

a)  Khẳng định đúng là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJackHình 1.17)
a) Dễ thấy HA+HB+HC=2HO  nếu tam giác ABC vuông
Nếu tam giác ABC không vuông gọi D là điểm đối xứng của A qua O khi đó
BH//DC (vì cùng vuông góc với AC)
BD//CH (vì cùng vuông góc với AB)

Suy ra BDCH là hình bình hành, do đó theo quy tắc hình bình hành thì HB+HC=HD  (1)

Mặt khác vì O là trung điểm của AD nên HA+HD=2HO  (2)

Từ (1) và (2) suy ra HA+HB+HC=2HO

Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC với các cạnh AB=c, BC=a, CA=b. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh rằng aIA+bIB+cIC=0   

Xem đáp án » 13/07/2024 13,926

Câu 2:

Cho hình vuông ABCD cạnh a  .

a) Chứng minh rằng  u=MA2MB+3MC2MD  không phụ thuộc vào vị trí điểm M.

Xem đáp án » 13/07/2024 9,092

Câu 3:

Cho tam giác ABC. Đặt a=AB, b=AC .

 a) Hãy dựng các điểm M, N thỏa mãn: AM=13AB, CN=2BC

Xem đáp án » 13/07/2024 7,866

Câu 4:

Cho hai tam giác ABC A1B1C1  có cùng trọng tâm G. Gọi G1,  G2,  G3  lần lượt là trọng tâm tam giác BCA1,  ABC1,  ACB1 . Chứng minh rằng GG1+GG2+GG3=0

Xem đáp án » 13/07/2024 7,764

Câu 5:

Cho hình vuông ABCD cạnh a

a) Chứng minh rằng u=4MA3MB+MC2MD  không phụ thuộc vào vị trí điểm M.

Xem đáp án » 13/07/2024 5,837

Câu 6:

Cho tam giác đều ABC cạnh a. Gọi điểm M, N   lần lượt là trung điểm BC,CA. Dựng các vectơ sau và tính độ dài của chúng.

a) AN+12CB

Xem đáp án » 02/11/2022 4,513

Câu 7:

Cho trước hai điểm A, B và hai số thực α , β thoả mãn  α+β0.  Chứng minh rằng tồn tại duy nhất điểm I thoả mãn  αIA+βIB=0.

Từ đó, suy ra với điểm bất kì M thì αMA+βMB=(α+β)MI.

Xem đáp án » 13/07/2024 3,772

Bình luận


Bình luận