Câu hỏi:
31/10/2022 1,944
Cho tam giác ABC với AB=c, BC=a, CA=b và có trọng tâm G. Gọi D,E,F lần lượt là hình chiếu G lên cạnh BC,CA,AB
Chứng minh rằng
Cho tam giác ABC với AB=c, BC=a, CA=b và có trọng tâm G. Gọi D,E,F lần lượt là hình chiếu G lên cạnh BC,CA,AB
Chứng minh rằng
Quảng cáo
Trả lời:
Ta có
Ta có , mặt khác G là trọng tâm tam giác ABC nên suy ra
Vậy
Ta có và (góc có cặp cạnh vuông góc với nhau)
Suy ra
và
Ta có thẳng hàng do đó G là trung điểm của QR
Theo quy tắc hình bình hành và hệ thức trung điểm ta có
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1:
(Hình 1.19)Gọi D là chân đường phân giác góc A
Do D là đường phân giác giác trong góc A nên ta có
Do I là chân đường phân giác nên ta có :
Từ (1) và (2) ta có điều phải chứng minh
Cách 2:
(hình 1.20)Qua C dựng đường thẳng song song với AI cắt BI tai B’;song song với BI cắt AI tại A’
Ta có (*)
Theo định lý Talet và tính chất đường phân giác trong ta có :
Tương tự :
Từ (1) và (2) thay vào (*) ta có :
Lời giải
Gọi O là tâm hình vuông.
Theo quy tắc ba điểm ta có
Mà nên
Suy ra không phụ thuộc vào vị trí điểm M
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.