Câu hỏi:

31/10/2022 257

Cho tam giác ABC đều tâm O. M là điểm tùy ý trong tam giác. Hạ MD, ME, MF tương ứng vuông góc với BC, CA, AB. Chọn khẳng định đúng?  

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

(hình 1.50) Qua M kẻ các đường thẳng song song với các cạnh D ABC, các đường thẳng này lần lượt cắt tại các điểm như hình vẽ. Dễ thấy ta có các tam giác đều MD1D2,  ME2E2,  MF1F2  và các hình bình hành MF1AE2,  ME1CD2,  MD1BF2 .

Ta có: MD=12(MD1+MD2) , ME=12(ME1+ME2) , MF=12(MF1+MF2) .

Cộng từng vế 3 đẳng thức và nhóm ta được:  MD+ME+MF=32MO

Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC với các cạnh AB=c, BC=a, CA=b. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh rằng aIA+bIB+cIC=0   

Xem đáp án » 13/07/2024 13,379

Câu 2:

Cho hình vuông ABCD cạnh a  .

a) Chứng minh rằng  u=MA2MB+3MC2MD  không phụ thuộc vào vị trí điểm M.

Xem đáp án » 13/07/2024 9,063

Câu 3:

Cho tam giác ABC. Đặt a=AB, b=AC .

 a) Hãy dựng các điểm M, N thỏa mãn: AM=13AB, CN=2BC

Xem đáp án » 13/07/2024 7,818

Câu 4:

Cho hai tam giác ABC A1B1C1  có cùng trọng tâm G. Gọi G1,  G2,  G3  lần lượt là trọng tâm tam giác BCA1,  ABC1,  ACB1 . Chứng minh rằng GG1+GG2+GG3=0

Xem đáp án » 13/07/2024 7,712

Câu 5:

Cho hình vuông ABCD cạnh a

a) Chứng minh rằng u=4MA3MB+MC2MD  không phụ thuộc vào vị trí điểm M.

Xem đáp án » 13/07/2024 5,806

Câu 6:

Cho tam giác đều ABC cạnh a. Gọi điểm M, N   lần lượt là trung điểm BC,CA. Dựng các vectơ sau và tính độ dài của chúng.

a) AN+12CB

Xem đáp án » 02/11/2022 4,488

Câu 7:

Cho trước hai điểm A, B và hai số thực α , β thoả mãn  α+β0.  Chứng minh rằng tồn tại duy nhất điểm I thoả mãn  αIA+βIB=0.

Từ đó, suy ra với điểm bất kì M thì αMA+βMB=(α+β)MI.

Xem đáp án » 13/07/2024 3,719

Bình luận


Bình luận