Câu hỏi:

18/11/2019 22,757

Cho hàm số  y=x4-4x3+4x2+a. Gọi M; m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn [0; 2] . Có bao nhiêu số nguyên a thuộc đoạn [ -3; 3] sao cho M≤ 2m?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Xét hàm số y= x4- 4x3+ 4x2+ a  trên đoạn [ 0; 2].

Ta có đạo hàm y’ = 4x3-12x2+ 8x,  y'=0

Khi đó;  y( 0) = y( 2) = a; y( 1) = a+ 1

+ Nếu a≥ 0  thì  M= a+ 1,m = a.

 Để M ≤ 2m khi a≥ 1, suy ra a1;2;3 thỏa mãn

+ Nếu a≤ - 1 thì M=a=-a, m=a+1=-a-1.

 Để  M≤ 2m thì a≤ -2,  suy ra a a-2;-3  

Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.

Chọn B.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Ta có: 

Ta xét các trường hợp sau

+  Nếu m2- 4= 0 hay m= ± 2

Khi m = 2 thì y’ = 8x7 nên x=0 là điểm cực tiểu.

Khi m = -2 thì y’ = x4( 8x4- 20 ) khi đó x= 0 không là điểm cực tiểu.

+  Nếu m ≠  ± 2 .Khi đó ta có

Số cực trị của hàm y = x8+ (m-2) x5- ( m2- 4) x4+ 1  bằng số cực trị của hàm g’( x)

+) Nếu x = 0 là điểm cực tiểu thì g’’ (0) > 0.

Khi đó: -4( m2 - 4) > 0 hay -2 < m < 2

Mà m nguyên nên m= -1; 0; 1

Kết hợp cả 2 trường hợp có 4 giá trị nguyên của m và tổng của chúng là:

2 + ( -1) + 0 + 1 = 2

Chọn  D.

Lời giải

+ Đồ thị hàm số đã cho có tiệm cận đứng là x= -2 và tiệm cận ngang là y= 1.

Giao điểm hai đường tiệm cận là I ( -2; 1) .

Ta có: 

A(a;1-3a+2)(C), B(b;1-3b+2)(C).IA=(a+2;-3a+2), IB=(b+2;-3b+2).

Đặt  a1== a+ 2 ; b1= b+ 2( a1≠ 0 ; b1≠0 ; a1 ≠ b1

Tam giác ABI đều khi và chỉ khi

Ta có (1) 

 

+ Trường hợp a1= b1 loại

+ Trường hợp a1= - b1 ; a1b1 = -3  (loại vì không thỏa (2) .

+ Trường hợp  a1 b1 =3 thay vào ( 2) ta được

3+93a12+9a12=12a12+9a12=12.

Vậy AB=IA=a12+9a12=23.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay