Câu hỏi:

17/05/2021 357

Cho x, y là các số thực thỏa mãn 2x+y13x+y+1=3x+3y+1. Tìm giá trị nhỏ nhất của biểu thức  P=x2+xy+y2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:2x+y13x+y+1=3x+3y+1

2x+y3x+y+1=6x+6y+2

6x+y+2x+y=6x+y+2

Đặt x+y=t, phương trình trở thành  6t+2t=6t+26t+2t6t2=0

Xét hàm số ft=6t+2t6t2 ta có:

f't=6t.ln6+2t.ln26

f''t=6t.ln26+2t.ln22>0tR

Do đó hàm số y=f't đồng biến trên R, suy ra phương trình f't=0 có nhiều nhất 1 nghiệm

Suy ra phương trình ft=0 có nhiều nhất 2 nghiệm.

Ta lại có f0=60+206.02=0f1=61+216.12=0 do đó phương trình ft=0 có đúng 2  nghiệm t = 0, t = 1.

x+y=0x+y=1

TH1: x+y=0y=x thay vào P ta có:  P=x2+xy+y2=x20

TH2: x+y=1y=1x thay vào P ta có:

P=x2+x1x+1x2=x2x+1 =x122+3434  

Vậy giá trị nhỏ nhất của P là 0, đạt được khi x + y = 0

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:  y'=3x26mx+3m21

Cho  y'=03x26mx+3m21=0x22mx+m21=0

Ta có: Δ'=m2m2+1=1>0, khi đó phương trình  có 2 nghiệm phân biệt:  x1=m+1x2=m1

Ta có BBT:

Ta có:

fm1=m33m+2022

fm+1=m33m+2018

TH1:  0<m1m>1

Ta có:  f0=2020

Để hàm số có GTNN trên 0;+ thì fm+1f0m33m+20182020

m33m20

Xét hàm số fm=m33m2 ta có  f'm=3m23=0m=±1

BBT:

Dựa vào BBT ta thấy  fm0m2

Kết hợp điều kiện  1<m2

TH2: m10<m+11<m1, khi đó GTNN của hàm số trên 0;+ là  fm+1

Kết hợp 2 trường hợp ta có: 1<m21<m1 mà  mZm0;1;2

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Lời giải

ĐK:  xm

Ta có: y'=m2m+2xm2 nhận thấy m2m+2=m122+74>0,m nên  y'>0m

Hay hàm số đồng biến trên từng khoảng xác định.

Để hàm số đạt GTLN trên 0;4m0;4m<0m>4 

Suy ra max0;4y=y4=4m224m. Theo bài ra ta có:4m224m=1m2+2=m4m2+m+6=0m=2(ktm)m=3(tm)

Vậy có một giá trị của m thỏa mãn

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay