Câu hỏi:

04/06/2021 438

Cho hàm số y = f(x) có đạo hàm trên  và f'x<0,x0;+. Biết f1=2020. Khẳng định nào sau đây đúng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Do f'x<0;x0;+ nên hàm số y=fx nghịch biến trên 0;+

Do đó x1,x20;+,x1<x2fx1>fx2

Áp dụng tính chất trên ta được:

+) f2020>f2022, suy ra A đúng.

+ ) f2018>f2020, suy ra B sai.

+) Do 00;+ nên không đủ căn cứ để đưa ra kết luận f0=f1=2020, suy ra C sai.

+) f2+f3<f1+f1=4040, suy ra D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Xét y=13x3mx2+4x1

TXĐ: D=

Ta có: y'=x22mx+4

Để hàm số đồng biến trên thì 

y'0 xa>0Δ'01>0m2402m2

m nên m2;1;0;1;2

Lời giải

Đáp án A

Xét hàm số y=2019fx. Ta có y'=f'x

y'>0f'x<0

Dựa vào đồ thị ta thấy trên khoảng 0;1 thì f'x<0

Vậy trên khoảng 0;1 hàm số y=2019fx đồng biến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP