Cho hàm số . Khẳng định nào dưới đây là SAI?
A. Hàm số đồng biến trên khoảng
B. Hàm số đồng biến trên
C. Hàm số đồng biến trên khoảng
D. Hàm số đồng biến trên khoảng
Quảng cáo
Trả lời:
Đáp án B
Tập xác định:
Ta có suy ra hàm số đồng biến trên các khoảng và . Từ đó A, C, D đều đúng. Hơn nữa ta chỉ xét tính đơn điệu của hàm số trên tập , trong đó là khoảng, đoạn hoặc nửa khoảng. Do đó không xét tính đơn điệu trên tập
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Xét
TXĐ:
Ta có:
Để hàm số đồng biến trên thì
Mà nên
Lời giải
Đáp án A
Xét hàm số . Ta có
Dựa vào đồ thị ta thấy trên khoảng thì
Vậy trên khoảng hàm số đồng biến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hàm số đồng biến trên R
B. Hàm số đồng biến trên và nghịch biến trên
C. Hàm số nghịch biến trên
D. Hàm số nghịch biến trên
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.