Câu hỏi:

13/07/2024 1,734

Cho hai tập hợp sau:

A = {x ℕ | -4 ≤ x ≤ -1};

B = {x ℤ | -1 ≤ x ≤ 3}.

Xét tính đúng sai của các mệnh đề sau:

Tập hợp B là tập con của ℝ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Tập hợp B là tập hợp gồm các số nguyên có giá trị lớn hơn hoặc bằng 1 và nhỏ hơn hoặc bằng 3 nên tập hợp B là tập con của ℤ.

Mà ℤ là tập con của ℝ nên mệnh đề “Tập hợp B là tập con của ℝ” là mệnh đề đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Trong 20 học sinh thích môn Ngữ Văn thì có 4 học sinh thích cả môn Ngữ văn và Toán.

Trong 18 học sinh thích môn Toán thì có 4 học sinh thích cả môn Ngữ văn và Toán.

Do đó số học sinh thích môn Ngữ văn hoặc Toán là: 20 + 18 4 = 34 (học sinh).

Số học sinh không thích môn nào trong hai môn Ngữ văn và Toán là:

40 34 = 6 (học sinh).

Vậy có 6 học sinh không thích môn nào trong hai môn Ngữ văn và Toán.

Lời giải

Lời giải:

Xét tập A = {x ℚ | (2x + 1)(x2 + x -1)(2x2 -3x + 1) = 0}

(2x + 1)(x2 + x- 1)(2x2 -3x + 1) = 0

Trường hợp 1.

2x + 1 = 0

2x = 1

x = \[\frac{{ - 1}}{2} \in \mathbb{Q}\]

Trường hợp 2.

x2 + x -1 = 0

= 12 4.(1) = 5 > 0.

Do đó phương trình có hai nghiệm phân biệt:

x1 = \[\frac{{ - 1 - \sqrt 5 }}{2} \notin \mathbb{Q}\] (do \[ - 1 - \sqrt 5 \notin \mathbb{Q}\]);

x2 = \[\frac{{ - 1 + \sqrt 5 }}{2} \notin \mathbb{Q}\] (do \[ - 1 + \sqrt 5 \notin \mathbb{Q}\]);

Trường hợp 3.

2x2 - 3x + 1 = 0

2x2 - 2x - x + 1 = 0

2x(x - 1) (x  1) = 0

(x - 1)(2x - 1) = 0

\[ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2{\rm{x}} - 1 = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \mathbb{Q}\\x = \frac{1}{2} \in \mathbb{Q}\end{array} \right.\]

Vậy A = \[\left\{ {\frac{{ - 1}}{2};\frac{1}{2};1} \right\}.\]

Xét tập B = {x ℕ | x2 > 2 và x < 4}

Vì x ℕ và x < 4 nên x {0; 1; 2; 3}.

Ta có 02 = 0 < 2; 12= 1 < 2; 22</> = 4 > 2; 32 = 9 > 2.

Do đó B = {2; 3}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hai tập hợp A = (-; -1] và B = (-2; 4]. Tìm mệnh đề sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay