Câu hỏi:

25/08/2022 444

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng minh:

a, AC // EF

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng (ảnh 1)

E là điểm đối xứng với D qua A A là trung điểm của DE.

F là điểm đối xứng với D qua C C là trung điểm của DF.

a) Xét Δ DEF có

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng (ảnh 2)

AC là đường trung bình của Δ DEF.

AC // EF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, F là điểm đối xứng với D (ảnh 1)

Theo giả thiết ta có:

+ A là trung điểm của DE thì AD = AE       ( 1 )

+ C là trung điểm của DF thì CD = CF       ( 2 )

Ta có ABCD là hình bình hành nên AD//BC

AE//BC       ( 3 ) và AD = BC       ( 4 )

Từ ( 1 ), ( 4 ) AE = BC       ( 5 )

Từ ( 3 ) và ( 5 ), tứ giác ACBE có cặp cạnh đối song song và bằng nhau nên là hình bình hành.

Áp dụng tính chất và định nghĩa về hình bình hành ACBE ta được

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, F là điểm đối xứng với D (ảnh 2)

Chứng minh tương tự, tứ giác ACBF là hình bình hành

Ta được:

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, F là điểm đối xứng với D (ảnh 3)

Từ ( 6 ), ( 7 ) E, B, F thẳng hàng và BE = BF do đó B là trung điểm của EF hay E đối xứng với F qua B.

Câu 2

Lời giải

Chọn đáp án C.

Định nghĩa: Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP