Câu hỏi:

12/07/2024 1,408

Cho hình thang vuông ABCD có A^=D^ = 900 và CD = 2AB. Kẻ DE AC, gọi I là trung điểm của EC. Chứng minh rằng BID^ = 900.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang vuông ABCD có góc A = góc D = 90 độ và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm (ảnh 1)

Vẽ BH DC thì tứ giác ABHD có ba góc vuông là A^=D^=H^= 900 nên nó là hình chữ nhật.

Áp dụng tính chất về cạnh và giả thiết về hình chữ nhật ABHD ta được:

Cho hình thang vuông ABCD có góc A = góc D = 90 độ và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm (ảnh 2)

Lại có IE = IC       ( 2 )

Từ ( 1 ), ( 2 ) suy ra HI là đường trung bình của tam giác DCE.

Áp dụng định lý về được trung bình trong tam giác DCE ta được HI//DE do DE AC theo giả thiết nên HI AC hay tam giác AIH vuông tại I.

+ Trong hình chữ nhật ABHD có

Cho hình thang vuông ABCD có góc A = góc D = 90 độ và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm (ảnh 3)

là đường trung tuyến của hai tam giác vuông AIH và BID.

Mặt khác ta lại có:

Cho hình thang vuông ABCD có góc A = góc D = 90 độ và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm (ảnh 4)

Điều đó chứng tỏ trong tam giác BID có IO là đường trung tuyến ứng với cạnh huyền và bằng nửa cạnh ấy nên nó là tam giác vuông tại I.

Vậy BID^ = 900

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án C.

Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC

DE là đương trung bình của tam giác ABC

Hay DE//BC và DE = 12BC.

+ Hình thang cân là hình thang có hai góc kề một cạnh bằng nhau và hai cạnh bên bằng nhau nhưng bài toán này hai góc kề một cạnh đấy không bằng nhau

→ Đáp án C sai.

Lời giải

+ Hình thang cân có hai góc kề một cạnh đáy bằng nhau.

→ Đáp án C sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP