Gọi X là tập hợp các phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt, Y là tập hợp các phương trình bậc hai ax2 + bx + c = 0 có hệ số a và c trái dấu. Nêu mối quan hệ giữa hai tập hợp X và Y.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập ôn tập cuối năm có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có các phương trình bậc hai ax2 + bx + c = 0 có hệ số a và c trái dấu thì luôn có hai nghiệm trái dấu, hiển nhiên đây là hai nghiệm phân biệt. Nhưng các phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt thì hai nghiệm này chưa chắc đã trái dấu.
Do đó mọi phần tử của tập hợp Y thì đều là phần tử của tập hợp X.
Vậy Y là tập con của tập hợp X và ta viết Y ⊂ X.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Hàm số đã cho có tập xác định là toàn bộ tập số thực ℝ khi và chỉ khi x2 + 2mx – 2m + 3 ≥ 0 với mọi x ∈ ℝ.
Xét f(x) = x2 + 2mx – 2m + 3 có ∆' = m2 – 1 . (– 2m + 3) = m2 + 2m – 3 và a = 1 > 0.
Ta có f(x) ≥ 0 với mọi x ∈ ℝ ⇔ ∆' ≤ 0 ⇔ m2 + 2m – 3 ≤ 0 ⇔ – 3 ≤ m ≤ 1.
Vậy – 3 ≤ m ≤ 1 thì thỏa mãn yêu cầu bài toán.
Lời giải
Hướng dẫn giải
Để lập đội văn nghệ gồm 10 học sinh ở cả ba khối và có nhiều nhất 2 học sinh khối lớp 10, ta thấy có 2 trường hợp: đội văn nghệ có đúng 1 học sinh khối lớp 10 và có đúng 2 học sinh khối lớp 10.
- Trường hợp 1: Có đúng 1 học sinh khối lớp 10.
Số cách chọn 1 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^1\) cách.
Chọn 9 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^9\) cách.
Vậy, theo quy tắc nhân, có \(C_5^1.C_{10}^9\) = 5 . 10 = 50 cách lập đội văn nghệ trong trường hợp 1.
- Trường hợp 2: Có đúng 2 học sinh khối lớp 10.
Số cách chọn 2 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^2\) cách.
Chọn 8 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^8\) cách.
Vậy, theo quy tắc nhân, có \(C_5^2.C_{10}^8\) = 10 . 45 = 450 cách lập đội văn nghệ trong trường hợp 2.
Vì hai trường hợp rời nhau nên theo quy tắc cộng, ta có số cách lập đội văn nghệ thỏa mãn yêu cầu của đề bài là: 50 + 450 = 500 (cách).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.