Người ta ước tính rằng trong khoảng từ năm 2010 đến năm 2030, số lượng điện thoại di động bán được của một công ty có thể được xấp xỉ bởi một hàm số bậc hai. Năm 2010 công ty đó bán được khoảng 19 nghìn chiếc điện thoại di động và năm 2019 bán được khoảng 100 nghìn chiếc điện thoại di động. Giả sử t là số năm tính từ năm 2010. Số điện thoại di động bán được năm 2010 được biểu diễn bởi điểm (0; 19) và số điện thoại di động bán được năm 2019 được biểu diễn bởi điểm (9; 100). Giả sử điểm (0; 19) là đỉnh đồ thị của hàm số bậc hai này.
Tìm hàm số bậc hai biểu diễn số điện thoại di động công ty đó bán được qua từng năm.
Người ta ước tính rằng trong khoảng từ năm 2010 đến năm 2030, số lượng điện thoại di động bán được của một công ty có thể được xấp xỉ bởi một hàm số bậc hai. Năm 2010 công ty đó bán được khoảng 19 nghìn chiếc điện thoại di động và năm 2019 bán được khoảng 100 nghìn chiếc điện thoại di động. Giả sử t là số năm tính từ năm 2010. Số điện thoại di động bán được năm 2010 được biểu diễn bởi điểm (0; 19) và số điện thoại di động bán được năm 2019 được biểu diễn bởi điểm (9; 100). Giả sử điểm (0; 19) là đỉnh đồ thị của hàm số bậc hai này.
Tìm hàm số bậc hai biểu diễn số điện thoại di động công ty đó bán được qua từng năm.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập ôn tập cuối năm có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Giả sử y = at2 + bt + c (a ≠ 0) là hàm số bậc hai mô tả lượng điện thoại di động bán được qua từng năm, trong đó t là số năm tính từ năm 2010.
Từ giả thiết ta có (0; 19) là đỉnh của đồ thị hàm số nên b = 0 và c = 19.
Điểm (9; 100) thuộc đồ thị hàm số nên ta có: 100 = a . 92 + 0 . 9 + 19 ⇔ a = 1.
Vậy hàm số cần tìm là: y = t2 + 19.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Hàm số đã cho có tập xác định là toàn bộ tập số thực ℝ khi và chỉ khi x2 + 2mx – 2m + 3 ≥ 0 với mọi x ∈ ℝ.
Xét f(x) = x2 + 2mx – 2m + 3 có ∆' = m2 – 1 . (– 2m + 3) = m2 + 2m – 3 và a = 1 > 0.
Ta có f(x) ≥ 0 với mọi x ∈ ℝ ⇔ ∆' ≤ 0 ⇔ m2 + 2m – 3 ≤ 0 ⇔ – 3 ≤ m ≤ 1.
Vậy – 3 ≤ m ≤ 1 thì thỏa mãn yêu cầu bài toán.
Lời giải
Hướng dẫn giải
Để lập đội văn nghệ gồm 10 học sinh ở cả ba khối và có nhiều nhất 2 học sinh khối lớp 10, ta thấy có 2 trường hợp: đội văn nghệ có đúng 1 học sinh khối lớp 10 và có đúng 2 học sinh khối lớp 10.
- Trường hợp 1: Có đúng 1 học sinh khối lớp 10.
Số cách chọn 1 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^1\) cách.
Chọn 9 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^9\) cách.
Vậy, theo quy tắc nhân, có \(C_5^1.C_{10}^9\) = 5 . 10 = 50 cách lập đội văn nghệ trong trường hợp 1.
- Trường hợp 2: Có đúng 2 học sinh khối lớp 10.
Số cách chọn 2 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^2\) cách.
Chọn 8 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^8\) cách.
Vậy, theo quy tắc nhân, có \(C_5^2.C_{10}^8\) = 10 . 45 = 450 cách lập đội văn nghệ trong trường hợp 2.
Vì hai trường hợp rời nhau nên theo quy tắc cộng, ta có số cách lập đội văn nghệ thỏa mãn yêu cầu của đề bài là: 50 + 450 = 500 (cách).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.