Câu hỏi:

11/07/2024 1,922

Tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của hai mẫu số liệu về lượng mưa trung bình các tháng tại Đà Nẵng và Hà Nội. Nhận xét gì về sự phân tán của hai mẫu số liệu này?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của hai mẫu số liệu về lượng mưa trung bình các tháng tại Đà Nẵng và Hà Nội.

* Đà Nẵng:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

13,2; 14,1; 28,0; 39,5; 58,6; 60,2; 62,5; 119,6; 145,1; 253,5; 291,2; 304,0.  

Khoảng biến thiên: R = 304,0 – 13,2 = 290,8.

Trung vị: \({Q_2} = \frac{{60,2 + 62,5}}{2} = 61,35\).

Tứ phân vị thứ nhất: Q1 = \(\frac{{28,0 + 39,5}}{2} = 33,75\).

Tứ phân vị thứ ba: Q3 = \(\frac{{145,1 + 253,5}}{2}\)= 199,3.

Khoảng tứ phân vị: ∆Q = Q3 – Q1 = 199,3 – 33,75 = 165,55.

Phương sai:

s2 = [(115,79 – 13,2)2 + (115,79 – 14,1)2 + (115,79 – 28,0)2 + (115,79 – 39,5)2 + (115,79 – 58,6)2 + (115,79 – 60,2)2 + (115,79 – 62,5)2 + (115,79 – 119,6)2 + (115,79 – 145,1)2 + (115,79 – 253,5)2 + (115,79 – 291,2)2 + (115,79 – 304,0)2] : 12 ≈ 10 801,91.  

Độ lệch chuẩn: s = \(\sqrt {{s^2}} \)≈ 103,93.

* Hà Nội:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

11,9; 13,0; 14,1; 29,2; 45,0; 52,5; 84,8; 126,3; 160,1; 173,8; 204,0; 226,2.

Khoảng biến thiên: R' = 226,2 – 11,9 = 214,3.

Trung vị: \({Q'_2} = \frac{{52,5 + 84,8}}{2} = 68,65\).

Tứ phân vị thứ nhất: Q'1 = \(\frac{{14,1 + 29,2}}{2} = 21,65\).

Tứ phân vị thứ ba: Q'3 = \(\frac{{160,1 + 173,8}}{2}\)= 166,95.

Khoảng tứ phân vị: ∆'Q = Q'3 – Q'1 = 166,95 – 21,65 = 145,3.

Phương sai:

s'2 = [(95,08 – 11,9)2 + (95,08 – 13,0)2 + (95,08 – 14,1)2 + (95,08 – 29,2)2 + (95,08 – 45,0)2 + (95,08 – 52,5)2 + (95,08 – 84,8)2 + (95,08 – 126,3)2 + (95,08 – 160,1)2 + (95,08 – 173,8)2 + (95,08 – 204,0)2 + (95,08 – 226,2)2] : 12 ≈ 5 786,32.  

Độ lệch chuẩn: s' = \(\sqrt {{{s'}^2}} \)≈ 76,07.

Từ đó ta có dãy số liệu về lượng mưa trung bình các tháng tại Đà Nẵng phân tán hơn so với tại Hà Nội.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Hàm số đã cho có tập xác định là toàn bộ tập số thực ℝ khi và chỉ khi x2 + 2mx – 2m + 3 ≥ 0 với mọi x ℝ.

Xét f(x) = x2 + 2mx – 2m + 3 có ∆' = m2 – 1 . (– 2m + 3) = m2 + 2m – 3 và a = 1 > 0.

Ta có f(x) ≥ 0 với mọi x ' ≤ 0 m2 + 2m – 3 ≤ 0 – 3 ≤ m ≤ 1.

Vậy – 3 ≤ m ≤ 1 thì thỏa mãn yêu cầu bài toán.

Lời giải

Hướng dẫn giải

Để lập đội văn nghệ gồm 10 học sinh ở cả ba khối và có nhiều nhất 2 học sinh khối lớp 10, ta thấy có 2 trường hợp: đội văn nghệ có đúng 1 học sinh khối lớp 10 và có đúng 2 học sinh khối lớp 10.

- Trường hợp 1: Có đúng 1 học sinh khối lớp 10.

Số cách chọn 1 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^1\) cách.

Chọn 9 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^9\) cách.

Vậy, theo quy tắc nhân, có \(C_5^1.C_{10}^9\) = 5 . 10 = 50 cách lập đội văn nghệ trong trường hợp 1.

- Trường hợp 2: Có đúng 2 học sinh khối lớp 10.

Số cách chọn 2 học sinh khối lớp 10 trong 5 học sinh khối lớp 10 là: \(C_5^2\) cách.

Chọn 8 bạn còn lại ở hai khối lớp 11 và 12, số cách chọn là: \(C_{10}^8\) cách.

Vậy, theo quy tắc nhân, có \(C_5^2.C_{10}^8\) = 10 . 45 = 450 cách lập đội văn nghệ trong trường hợp 2.

Vì hai trường hợp rời nhau nên theo quy tắc cộng, ta có số cách lập đội văn nghệ thỏa mãn yêu cầu của đề bài là: 50 + 450 = 500 (cách).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP