Câu hỏi:

19/09/2022 2,522

Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:
A: “Ba viên trúng vòng 10”;
B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;
C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;
D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.
Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên H=ABCD
Áp dụng quy tắc cộng mở rộng ta có: PH=PA+PB+PC+PD
PA=0,2.0,2.0,2=0,008;
PB=0,2.0,2.0,25+0,2.0,25.0,2+0,25.0,2.0,2=0,03
PC=0,2.0,25.0,25+0,25.0,2.0,25+0,25.0,25.0,2=0,0375
PD=0,2.0,2.0,15+0,2.0,15.0,2+0,15.0,2.0,2=0,018
Do đó PH=0,008+0,03+0,0375+0,018=0,0935.
Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến có người thứ nhất bắn trúng thì A¯ là biến cố người thứ nhất bắn trượt.
Vậy PA=0,5;PA¯=0,5 .
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có PB=0,6; PB¯=0,4;PC=0,7 ;PC¯=0,3 .
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: PA.PB.PC¯=0,5.0,6.0,3=0,09.
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: PA.PB¯.PC=0,5.0,4.0,7=0,14.
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: PA¯.PB.PC=0,5.0,6.0,7=0,21.
Vậy xác suất để hai người bắn trúng bia là: 0,09+0,14+0,21=0,44.

Đáp án B

Lời giải

Gọi A1,A2,X lần lượt là biến cố bắn trúng mục tiêu của viên đạn thứ nhất, viên đạn thứ hai, một viên đạn trúng mục tiêu và một viên trượt mục tiêu.
Khi đó X=A1A2¯+A1¯.A2.
Xác suất cần tìm là PX=PA1A2¯+PA1¯.A2=0,6.0,4+0,4.0,6=0,48

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay