Câu hỏi:

21/09/2022 1,844 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với

A. AD
B. BJ
C. BI
D. IJ

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. (ảnh 1)

Ta có: SSABSCDAB//CD giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua S và song song với AB. Mà I, J lần lượt là trung điểm của AB và CD nên IJ // AB.

Vậy giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với IJ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. SC
B. đường thẳng qua S và song song với AB
C. đường thẳng qua G và song song với CD
D. đường thẳng qua G và cắt BC

Lời giải

Đáp án C
Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi I, J lần lượt là trung điểm của AD và BC, G là trọng tâm tam giác SAB. (ảnh 1)

Ta có GGABGIJAB//IJGABGIJ=Gx sao cho Gx // AB // IJ.

Mà AB // CD => Gx // AB // IJ // CD

 

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. a) Tìm giao tuyến của các cặp mặt phẳng (SAB) và (SCD);  (ảnh 1)

a) Ta có SSABSCDABSAB;  CDSCDAB//CD

SABSCD=Sx trong đó Sx // AB // CD

Trong (ABCD) gọi O=ACBD, suy ra OSACSBD   1

Lại có SSACSBD          2

Từ (1) và (2), suy ra SO=SACSBD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. đường thẳng qua S và song song với AB và CD
B. đường thẳng qua S và song song với AD và BC
C. đường thẳng qua S và giao điểm của AD và CD
D. đường thẳng qua S và giao điểm của AC và BD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP